Skip to main content
Log in

The limit velocity and limit displacement of nanotwin-strengthened metals under ballistic impact

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A new category of structural metals with high strength and good ductility is coarse-grained metals strengthened by nanotwinned (NT) regions. This unique combination makes them particularly suitable for applications in bulletproof targets. The extent of this improvement, however, depends on the volume fraction of the NT regions and multiple other microstructural features. Here, a numerical model based on the strain gradient plasticity and the Johnson–Cook failure criterion is developed to study the effects of these attributes. The ballistic performance is quantified by two indices: the limit velocity that measures its ability to resist failure and the limit displacement that measures its ability to resist deformation. The results obtained indicate that, in general, a relatively small twin spacing and a moderate volume fraction of NT regions can achieve both excellent limit velocity and limit displacement. Moreover, array-arranged NT regions are more effective than staggered NT regions in enhancing the limit velocity, but the influence of the array group tends to depend more on the volume fraction of NT regions than the latter one. Mechanism analyses based on the three stages of the impact process and two categories of low-speed impact are performed. The simulated results could provide significant insights into the NT structures for a superior class of nanotwin-strengthened metals for ballistic protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nobili, A., Radi, E., Lanzoni, L.: On the effect of the backup plate stiffness on the brittle failure of a ceramic armor. Acta Mech. 227, 159–172 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buchely, M.F., Maranon, A.: An engineering model for the penetration of a rigid-rod into a Cowper–Symonds low-strength material. Acta Mech. 226, 2999–3010 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kumar, S., Gupta, D.S., Singh, I., Sharma, A.: Behavior of Kevlar/epoxy composite plates under ballistic impact. J. Reinf. Plast. Compos. 29, 2048–2064 (2010)

    Article  Google Scholar 

  4. Sun, L.Y., Gibson, R.F., Gordaninejad, F., Suhr, J.: Energy absorption capability of nanocomposites: A review. Compos. Sci. Technol. 69, 2392–3409 (2009)

  5. Erkendirci, O.F., Haque, B.Z.: Quasi-static penetration resistance behavior of glass fiber reinforced thermoplastic composites. Compos. Part B Eng. 43, 3391–3405 (2012)

    Article  Google Scholar 

  6. Jin, L.M., Hu, H., Sun, B.Z., Gu, B.H.: A simplified microstructure model of bi-axial warp-knitted composite for ballistic impact simulation. Compos. Part B Eng. 41, 337–353 (2010)

    Article  Google Scholar 

  7. Shokrieh, M.M., Javadpour, G.H.: Penetration analysis of a projectile in ceramic composite armor. Compos. Struct. 82, 269–276 (2008)

    Article  Google Scholar 

  8. Tan, P.: Numerical simulation of the ballistic protection performance of a laminated armor system with pre-existing debonding/delamination. Compos. Part B Eng. 59, 50–59 (2014)

    Article  Google Scholar 

  9. Jena, P.K., Ramanjeneyulu, K., Kumar, K.S., Bhat, T.B.: Ballistic studies on layered structures. Mater. Des. 30, 1922–1929 (2009)

    Article  Google Scholar 

  10. Ubeyli, M., Deniz, H., Demir, T., Ogel, B., Gurel, B., Keles, O.: Ballistic impact performance of an armor material consisting of alumina and dual phase steel layers. Mater. Des. 32, 1565–1570 (2011)

    Article  Google Scholar 

  11. Guo, X., Sun, X., Tian, X., Weng, G.J., Ouyang, Q.D., Zhu, L.L.: Simulation of ballistic performance of a two-layered structure of nanostructured metal and ceramic. Compos. Struct. 157, 163–173 (2016)

    Article  Google Scholar 

  12. Yuan, C., Qin, Q., Wang, T.J.: Simplified analysis of large deflection response of a metal sandwich beam subjected to impulsive loading. Acta Mech. 226, 3639–3651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ma, E.: Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58, 49–53 (2006)

    Article  Google Scholar 

  14. Lu, L., Chen, X., Huang, X., Lu, K.: Revealing the maximum strength in nanotwinned copper. Science 323, 607–610 (2009)

    Article  Google Scholar 

  15. Lu, K., Lu, L., Suresh, S.: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009)

    Article  Google Scholar 

  16. Chen, A.Y., Liu, J.B., Wang, H.T., Lu, J., Wang, Y.M.: Gradient twinned 304 stainless steels for high strength and high ductility. Mater. Sci. Eng. A 667, 179–188 (2016)

    Article  Google Scholar 

  17. Dao, M., Lu, L., Asaro, R., Hosson, J.D., Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041–4065 (2007)

    Article  Google Scholar 

  18. Sennour, M., Korinek, S.L., Champion, Y., Hytch, M.J.: HRTEM study of defects in twin boundaries of ultra-fine grained copper. Philos. Mag. 87, 1465–1486 (2007)

    Article  Google Scholar 

  19. Qin, E.W., Lu, L., Tao, N.R., Tan, J., Lu, K.: Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles. Acta Mater. 57, 6215–6225 (2009)

    Article  Google Scholar 

  20. Wang, G., Jiang, Z., Lian, J.: Enhanced tensile ductility in an electrodeposited Cu with nano-sized growth twins. Int. J. Mod. Phys. B 24, 2537–2542 (2010)

    Article  Google Scholar 

  21. Zhang, Y., Tao, N.R., Lu, K.: Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles. Acta Mater. 56, 2429–2440 (2008)

    Article  Google Scholar 

  22. Li, Y.S., Zhang, Y., Tao, N.R., Lu, K.: Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation. Scr. Mater. 59, 475–478 (2008)

    Article  Google Scholar 

  23. Xiao, G.H., Tao, N.R., Lu, K.: Strength–ductility combination of nanostructured Cu–Zn alloy with nanotwin bundles. Scr. Mater. 65, 119–122 (2011)

    Article  Google Scholar 

  24. Lu, K., Yan, F.K., Wang, H.T., Tao, N.R.: Strengthening austenitic steels by using nanotwinned austenitic grains. Scr. Mater. 66, 878–883 (2012)

    Article  Google Scholar 

  25. Yan, F.K., Liu, G.Z., Tao, N.R., Lu, K.: Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles. Acta Mater. 60, 1059–1071 (2012)

    Article  Google Scholar 

  26. Wang, H.T., Tao, N.R., Lu, K.: Strengthening an austenitic Fe–Mn steel using nanotwinned austenitic grains. Acta Mater. 60, 4027–4040 (2012)

    Article  Google Scholar 

  27. Liu, G.Z., Tao, N.R., Lu, K.: 316L Austenite stainless steels strengthened by means of nano-scale twins. J. Mater. Sci. Technol. 26, 289–292 (2010)

    Article  Google Scholar 

  28. Zhang, Z.B., Mishin, O.V., Tao, N.R., Pantleon, W.: Microstructure and annealing behavior of a modified 9Cr–1Mo steel after dynamic plastic deformation to different strains. J. Nucl. Mater. 458, 64–69 (2015)

    Article  Google Scholar 

  29. Yi, H.Y., Yan, F.K., Tao, N.R., Lu, K.: Comparison of strength–ductility combinations between nanotwinned austenite and martensite–austenite stainless steels. Mater. Sci. Eng. A 647, 152–156 (2015)

    Article  Google Scholar 

  30. Frontan, J., Zhang, Y., Dao, M., Lu, J., Galvez, F., Jerusalem, A.: Ballistic performance of nanocrystalline and nanotwinned ultrafine crystal steel. Acta Mater. 60, 1353–1367 (2012)

    Article  Google Scholar 

  31. Yang, G., Guo, X., Weng, G.J., Zhu, L.L., Ji, R.: Simulation of ballistic performance of coarse-grained metals strengthened by nanotwinned regions. Model. Simul. Mater. Sci. Eng. 23, 085009 (2015)

    Article  Google Scholar 

  32. Guo, X., Ji, R., Weng, G.J., Zhu, L.L., Lu, J.: Computer simulation of strength and ductility of nanotwin-strengthened coarse-grained metals. Model. Simul. Mater. Sci. Eng. 22, 075014 (2014)

    Article  Google Scholar 

  33. Guo, X., Ouyang, Q.D., Weng, G.J., Zhu, L.L.: The direct and indirect effects of nanotwin volume fraction on the strength and ductility of coarse-grained metals. Mater. Sci. Eng. A 657, 234–243 (2016)

    Article  Google Scholar 

  34. ABAQUS/Explicit, ABAQUS Theory Manual and User’s Manual, version 6.10. Dassault, Providence, RI (2013)

  35. Li, J.J., Soh, A.K.: Modeling of the plastic deformation of nanostructured materials with grain size gradient. Int. J. Plast. 39, 88–102 (2012)

    Article  Google Scholar 

  36. Liu, J.X., Soh, A.K.: Strain gradient elasto-plasticity with a new Taylor-based yield function. Acta Mech. 227, 3031–3048 (2016)

    Article  MathSciNet  Google Scholar 

  37. Zhu, L.L., Ruan, H.H., Li, X.Y., Dao, M., Gao, H.J., Lu, J.: Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals. Acta Mater. 59, 5544–5557 (2011)

    Article  Google Scholar 

  38. Xie, Q.J., Zhu, Z.W., Kang, G.Z.: Dislocation-dynamics-based dynamic constitutive model of magnesium alloy. Acta Mech. 228, 1415–1422 (2017)

    Article  Google Scholar 

  39. Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands (1983)

  40. Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985)

    Article  Google Scholar 

  41. Dabboussi, W., Nemes, J.A.: Modeling of ductile fracture using the dynamic punch test. Int. J. Mech. Sci. 47, 1282–1299 (2005)

    Article  Google Scholar 

  42. Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W.: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47, 1239–1263 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Huang, Y., Qu, S., Hwang, K.C., Li, M., Gao, H.J.: A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 20, 753–782 (2004)

    Article  MATH  Google Scholar 

  44. Kocks, U.F., Mecking, H.: Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci. 48, 171–273 (2003)

    Article  Google Scholar 

  45. Lu, L., Schwaiger, R., Shan, Z.W., Dao, M., Lu, K., Suresh, S.: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169–2179 (2005)

    Article  Google Scholar 

  46. Zhang, X., Wang, H., Chen, X.H., Lu, L., Lu, K., Hoagland, R.G., Misra, A.: High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Appl. Phys. Lett. 88, 173116 (2006)

    Article  Google Scholar 

  47. Tadmor, E.B., Bernstein, N.: A first-principles measure for the twinnability of FCC metals. J. Mech. Phys. Solids 52, 2507–2519 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, Q.D., Soh, A.K., Weng, G.J. et al. The limit velocity and limit displacement of nanotwin-strengthened metals under ballistic impact. Acta Mech 229, 1741–1757 (2018). https://doi.org/10.1007/s00707-017-2062-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2062-6

Navigation