Skip to main content
Log in

Shape optimization under uncertainty of morphing airfoils

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper is devoted to the formulation of a novel optimization under uncertainty framework for the definition of optimal shapes for morphing airfoils, applied here to advancing/retreating 2D airfoils. In particular, the morphing strategy is conceived with the intent of changing the shape at a given frequency to enhance aerodynamic performance. The optimization of morphing airfoils presented here only takes into account the aerodynamic performance. The paper is then focused on an aerodynamic optimization to set the optimal shape with respect to performance, where technological aspects are inserted through geometrical constraints. In fact, this paper presents an exploratory work on morphing geometries which aims at understanding the relationship between shape degree of freedom and actual aerodynamic gain. Thus, exploring and demonstrating the gain of the aerodynamic shape may drive the development of new mechanism for the realization of morphing structures, which could be applied to helicopter rotor blades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott, I.H., von Doenhoff, A.E.: Theory of Wing Section. Dover Publications Inc., New York (1949)

    Google Scholar 

  2. Airoldi, A., Crespi, M., Quaranta, G., Sala, G.: Design of a morphing airfoil with composite chiral structure. J. Aircr. 49(4), 1008–1019 (2012)

    Article  Google Scholar 

  3. Bailly, J., Delrieux, Y.: Improvement of noise reduction and performance for a helicopter model rotor blade by active twist actuation. In: Proceedings of 35th European Rotorcraft Forum, Hamburg, Germany, 22–25 Sept (2009)

  4. Barbarino, S., Bilgen, O., Ajaj, R.M., Friswell, M.I., Inman, D.J.: A review of morphing aircraft. J. Intell. Mater. Syst. Struct. 22(9), 823–877 (2011)

    Article  Google Scholar 

  5. Bousman, W.G.: Airfoil design and rotorcraft performance. In: American Helicopter Society 58th Annual Forum, Montreal, Canada (2002)

  6. Congedo, P., Corre, C., Martinez, J.M.: Shape optimization of an airfoil in a BZT flow with multiple-source uncertainties. Comput. Methods Appl. Mech. Eng. 200(1–4), 216–232 (2011)

    Article  MATH  Google Scholar 

  7. De Gaspari, A., Ricci, S.: A two-level approach for the optimal design of morphing wings based on compliant structures. J. Intell. Mater. Syst. Struct. 22(10), 1091–1111 (2011)

    Article  Google Scholar 

  8. Drela, M.: Xfoil: an analysis and design system for low Reynolds number airfoils. Conf. Low Reynolds Number Airfoil Aerodyn. Univ. Notre Dame 54, 1–12 (1989)

    Article  Google Scholar 

  9. Fanjoy, D., Crossley, W.A.: Aerodynamic shape design for rotor airfoils via genetic algorithm. J. Am. Helicopter Soc. 43(3), 263–270 (1998)

    Article  Google Scholar 

  10. Fincham, J., Friswell, M.: Aerodynamic optimisation of a camber morphing aerofoil. Aerosp. Sci. Technol. 43, 245–255 (2015)

    Article  Google Scholar 

  11. Fusi, F., Guardone, A., Quaranta, G., Congedo, P.M.: Multi-fidelity physics-based method for robust optimization with application to a hovering rotor airfoil. AIAA J. 53(11), 3448–3465 (2015)

    Article  Google Scholar 

  12. Gandhi, F., Frecker, M., Nissly, A.: Design optimization of a controllable camber rotor airfoil. AIAA J. 46(1), 142–153 (2008)

    Article  Google Scholar 

  13. Hirsch, C.: Numerical Computation of Internal and External Flows, 2nd edn. Butterworth-Heinemann, Oxford (2007)

    Google Scholar 

  14. Johnson, W.: Rotorcraft aerodynamics models for a comprehensive analysis. Technical report, Revised version of paper presented at the American Helicopter Society 54th Annual Forum (1998)

  15. Johnson, W.: Rotorcraft dynamics models for a comprehensive analysis. Technical report, Revised version of paper presented at the American Helicopter Society 54th Annual Forum (1998)

  16. Johnson, W.: Rotorcraft Aeromechanics. Cambridge University Press, New York (2013)

    Book  Google Scholar 

  17. Kenway, G., Martins, J.R.R.A.: Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration. J. Aircr. 51(1), 144–160 (2014)

    Article  Google Scholar 

  18. Kerho, M.F.: Adaptive airfoil dynamic stall control. J. Aircr. 44(4), 1350–1360 (2007)

    Article  Google Scholar 

  19. Kottapalli, S.: Low speed and high speed correlation of smart active flap rotor loads. In: American Helicopter Society Specialists Conference on Aeromechanics (2010)

  20. Kulfan, B.M., Bussoletti, J.E.: “Fundamental” parametric geometry representations for aircraft component shapes. In: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, VA (2006)

  21. Lee, D.S., Periaux, J., Onate, E., Gonzalez, L.F., Qin, N.: Active transonic aerofoil design optimization using robust multiobjective evolutionary algorithms. J. Aircr. 48(3), 1084–1094 (2011)

    Article  Google Scholar 

  22. Leishman, J.G.: Principles of Helicopter Aerodynamics. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  23. Mäkinen, R.A.E., Periaux, J., Toivanen, J.: Shape design optimization in 2D aerodynamics using genetic algorithms on parallel computers. In: Taylor, S., Ecer, A., Periaux, J., Satofuka, N. (eds.) Parallel Computational Fluid Dynamics, pp. 395–402. Elsevier, Amsterdam (1995)

  24. Martin, P.B., McAlister, K., Chandrasekhara, M.S., Geissler, W.: Dynamic stall measurements and computations for a vr-12 airfoil with a variable droop leading edge. In: 59th Annual Forum of the American Helicopter Society, Phoenix, Arizona, 6–8 May (2003)

  25. Masarati, P., Morandini, M., Mantegazza, P.: An efficient formulation for general-purpose multibody/multiphysics analysis. J. Comput. Nonlinear Dyn. 9(4), 041,001 (2014)

    Article  Google Scholar 

  26. Masarati, P., Piatak, D.J., Quaranta, G., Singleton, J.D., Shen, J.: Soft-inplane tiltrotor aeromechanics investigation using two comprehensive multibody solvers. J. Am. Helicopter Soc. 53(2), 179–192 (2008)

    Article  Google Scholar 

  27. Massaro, A., Benini, E.: Multi-objective optimization of helicopter airfoils using surrogate-assisted memetic algorithms. J. Aircr. 49(2), 375–383 (2012)

    Article  Google Scholar 

  28. Morris, A., Allen, C., Rendall, T.: Aerodynamic optimisation of hovering helicopter rotors using efficient and flexible shape parameterisation. In: 26th AIAA Applied Aerodynamics Conference (2008)

  29. Mura, G.L., Qin, N.: Local class shape transformation parameterization (I-CST) for airfoils. In: American Institute of Aeronautics and Astronautics (2017)

  30. Murugan, M.S., Woods, B.K.S., Friswell, M.I.: Morphing helicopter rotor blade with curvilinear fiber composites. In: 38th European Rotorcraft Forum (2012)

  31. Murugan, S., Chowdhury, R., Adhikari, S., Friswell, M.: Helicopter aeroelastic analysis with spatially uncertain rotor blade properties. Aerosp. Sci. Technol. 16(1), 29–39 (2012)

    Article  Google Scholar 

  32. Murugan, S., Woods, B., Friswell, M.: Hierarchical modeling and optimization of camber morphing airfoil. Aerosp. Sci. Technol. 42, 31–38 (2015)

    Article  Google Scholar 

  33. Palacios, F., Colonno, M.R., Aranake, A.C., Campos, A., Copeland, S.R., Economon, T.D., Lonkar, A., Lukaczyk, T.W., Taylor, T.W.R., Alonso, J.J.: Stanford University Unstructured (SU2): an open-source integrated computational environment for multi-physics simulation and design. In: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2013)

  34. Palacios, F., Economon, T.D., Aranake, A.C., Copeland, S.R., Lonkar, A.K., Lukaczyk, T.W., Manosalvas, D.E., Naik, K.R., Padron, A.S., Tracey, B., Variyar, A., Alonso, J.J.: Stanford University Unstructured (SU2): open-source analysis and design technology for turbulent flows. In: 52nd Aerospace Sciences Meeting (2014)

  35. Potsdam, M., Fulton, M.V., Dimanlig, A.: Multidisciplinary cfd/csd analysis of the smart active flap rotor. In: 66th Annual Forum of the American Helicopter Society, Phoenix, Arizona, 11–13 May (2010)

  36. Srinivas, N., Deb, K.: Multiobjective function optimization using nondominated sorting genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  37. Trenker, M.: Design concepts for adaptive airfoils with dynamic transonic flow control. J. Aircr. 40(4), 734–740 (2003)

    Article  Google Scholar 

  38. van der Wall, B.G.: 2nd HHC Aeroacoustic Rotor Test (HART II)—Part I: Test Documentation. DLR, Braunschweig (2003)

  39. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zanotti, A., Nilifard, R., Gibertini, G., Guardone, A., Quaranta, G.: Assessment of 2D/3D numerical modeling for deep dynamic stall experiments. J. Fluids Struct. 51(1), 97–115 (2014)

    Article  Google Scholar 

  41. Zhang, Q., Hoffmann, F.: Benefit studies for rotor with active twist control using weak fluid-structure coupling. In: Proceedings of 35th European Rotorcraft Forum, Hamburg, Germany, 22–25 Sept (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Congedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fusi, F., Congedo, P.M., Guardone, A. et al. Shape optimization under uncertainty of morphing airfoils. Acta Mech 229, 1229–1250 (2018). https://doi.org/10.1007/s00707-017-2049-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2049-3

Navigation