Skip to main content
Log in

Nonlinear resonances of hysteretic oscillators

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The response of single and two-degree-of-freedom mechanical systems with elements exhibiting a hysteretic restoring force is studied under harmonic imposed motion to characterize the nonlinear dynamic properties of the system. The hysteretic behavior of the element is described by the Bouc–Wen model, which is simple but able to represent different hysteretic behaviors. Since for a given restoring force the nonlinear response is affected by the oscillation amplitude, frequency-response curves for various excitation levels are constructed. The curve of periodic solutions for increasing excitation amplitude has been investigated analyzing the evolution of the resonance frequencies. Furthermore, in addition to known behaviors, to some extent already observed for single-degree-of-freedom hysteretic oscillators, a richer class of solutions and bifurcations is found for a 2-DOF system. New branches of stable periodic oscillations are bifurcated where conditions of internal resonance are encountered by varying the excitation amplitude; these are characterized by the onset of novel modes with an oscillation shape significantly different than that of modes on the fundamental branch. Finally, comparison between systems close to and far from internal resonance allowed to enlighten the role of the nonlinear coupling in the vibration mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fotiu, P., Irschik, H., Ziegler, F.: Forced vibrations of an elasto-plastic and deteriorating beam. Acta Mech. 69(1–4), 193–203 (1987)

    Article  MATH  Google Scholar 

  2. Vestroni, F., Noori, M.: Hysteresis in mechanical systems: modeling and dynamic response. Int. J. Nonlinear Mech. 37(8), 1261–1262 (2002)

    Article  Google Scholar 

  3. Zhang, H., Wang, E., Min, F., Zhang, N., Su, C., Rakheja, S.: Nonlinear dynamics analysis of the semiactive suspension system with magneto-rheological damper. Shock Vib. 2015. Article ID 971731 (2015)

  4. Ortin, J., Delaeyb, L.: Hysteresis in shape-memory alloys. Int. J. Nonlinear Mech. 37, 1275–1281 (2002)

    Article  MATH  Google Scholar 

  5. Bernardini, D., Vestroni, F.: Non-isothermal oscillations of pseudoelastic devices. Int. J. Nonlinear Mech. 38(9), 1297–1313 (2003)

    Article  MATH  Google Scholar 

  6. Laudani, A., Riganti, Fulginei F., Salvini, A.: Comparative analysis of Bouc–Wen and Jiles–Atherton models under symmetric excitations. Phys. B 435, 134–137 (2014)

    Article  Google Scholar 

  7. Foliente, G.: Hysteresis modeling of wood joints and structural systems. J. Struct. Eng. 121(6), 1013–1022 (1995)

    Article  Google Scholar 

  8. Bursi, O., Ceravolo, R., Reicher, S., Fragonara, L.: Identification of the hysteretic behaviour of a partial strength steel-concrete moment-resisting frame structure subject to pseudodynamic tests. Earthq. Eng. Struct. Dyn. 41, 1883–1903 (2012)

    Article  Google Scholar 

  9. Yan, C., Yang, D., Ma, Z.J., Jia, J.: Hysteretic model of SRUHSC column and SRC beam joints considering damage effects. Mater. Struct. 50, 88 (2017)

    Article  Google Scholar 

  10. Manzoori, A., Toopchi-Nezhad, H.: Application of an extended Bouc–Wen model in seismic response prediction of unbonded fiber-reinforced isolators. J. Earthq. Eng. 2016.1138166 (2016). https://doi.org/10.1080/13632469

  11. Lamarque, C.-H., Turi Savadkoohi, A.T.: Dynamical behavior of a Bouc–Wen type oscillator coupled to a nonlinear energy sink. Meccanica 49, 1917–1928 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Laxalde, D., Thouverez, F., Sinou, J.-J.: Dynamics of a linear oscillator connected to a small strongly non-linear hysteretic absorber. Int. J. Nonlinear Mech. 41, 969–978 (2006)

    Article  MATH  Google Scholar 

  13. Silva, L.L., Savi, M.A., Monteiro, P.C., Netto, T.A.: Effect of the piezoelectric hysteretic behavior on the vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 24(10), 1278–1285 (2013)

    Article  Google Scholar 

  14. Domaneschi, M.: Simulation of controlled hysteresis by the semi-active Bouc–Wen model. Comput. Struct. 106(107), 245–257 (2012)

    Article  Google Scholar 

  15. Carpineto, N., Lacarbonara, W., Vestroni, F.: Hysteretic tuned mass dampers for structural vibration mitigation. J. Sound Vib. 333, 1302–1318 (2014)

    Article  Google Scholar 

  16. Carboni, B., Lacarbonara, W.: Nonlinear dynamic characterization of a new hysteretic device: experiments and computations. Nonlinear Dyn. 83, 23–39 (2016)

    Article  Google Scholar 

  17. Ceravolo, R., Erlicher, S., Fragonara, L.Z.: Comparison of restoring force models for the identification of structures with hysteresis and degradation. J. Sound Vib. 332, 6982–6999 (2013)

    Article  Google Scholar 

  18. Hassani, V., Tjahjowidodo, T., Do, T.N.: A survey on hysteresis modeling, identification and control. Mech. Syst. Signal Process. 49, 209–233 (2014)

    Article  Google Scholar 

  19. Ma, F., Zhang, H., Bockstedte, A., Foliente, G.C., Paevere, P.: Parameter analysis of the differential model of hysteresis. J. Appl. Mech. 71, 342–349 (2004)

    Article  MATH  Google Scholar 

  20. Awrejcewicz, J.: Hysteresis modelling and chaos prediction in one and two-DOF hysteretic models. Arch. Appl. Mech. 77, 261–279 (2007)

    Article  MATH  Google Scholar 

  21. Awrejcewicz, J., Dzyubak, L., Lamarque, C.H.: Modelling of hysteresis using Masing–Bouc–Wen’s framework and search of conditions for the chaotic responses. Commun. Nonlinear Sci. Numer. Simul. 13, 939–958 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ismail, M., Ikhouane, F., Rodellar, J.: The hysteresis Bouc–Wen model, a survey. Arch. Comput. Methods Eng. 16, 161–188 (2009)

    Article  MATH  Google Scholar 

  23. Bouc, R.: Forced vibrations of mechanical systems with hysteresis. In: Proceedings of the 4th Conference on Nonlinear Oscillations, Prague (1967)

  24. Wen, Y.K.: Method of random vibration of hysteretic systems. ASCE J. Eng. Mech. 102(2), 249–263 (1976)

    Google Scholar 

  25. Baber, T., Wen, Y.: Random vibration hysteretic, degrading systems. J. Eng. Mech. 107(6), 1069–1087 (1981)

    Google Scholar 

  26. Baber, T., Noori, M.: Random vibration of degrading, pinching systems. J. Eng. Mech. 111(8), 1010–1026 (1985)

    Article  Google Scholar 

  27. Wong, C.W., Ni, Y.Q., Lau, S.L.: Steady-state oscillation of hysteretic differential model. I: response analysis. ASCE J. Eng. Mech. 120, 2271–2298 (1994)

    Article  Google Scholar 

  28. Ikhouane, F., Mañosa, V., Rodellar, J.: Dynamic properties of the hysteretic Bouc–Wen model. Syst. Control Lett. 56, 197–205 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Erlicher, S., Bursi, O.S.: Bouc–Wen type models with stiffness degradation: thermodynamic analysis and applications. ASCE J. Eng. Mech. 134(10), 843–855 (2008)

    Article  Google Scholar 

  30. Capecchi, D., Vestroni, F.: Periodic response of a class of hysteretic oscillators. Int. J. Nonlinear Mech. 25(2), 309–317 (1990)

    Article  MATH  Google Scholar 

  31. Lacarbonara, W., Vestroni, F.: Nonclassical responses of oscillators with hysteresis. Nonlinear Dyn. 32(3), 235–258 (2003)

    Article  MATH  Google Scholar 

  32. Li, H., Meng, G.: Nonlinear dynamics of a SDOF oscillator with Bouc–Wen hysteresis. Chaos Solitons Fractals 34, 337–343 (2007)

    Article  MATH  Google Scholar 

  33. Capecchi, D., Masiani, R.: Reduced phase space analysis for hysteretic oscillators of Masing type. Chaos Solitons Fractals 7(10), 1583–1600 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Casini, P., Vestroni, F.: Characterization of bifurcating nonlinear normal modes in piecewise linear mechanical systems. Int. J. Nonlinear Mech. 46, 142–150 (2011)

    Article  Google Scholar 

  35. Giannini, O., Casini, P., Vestroni, F.: Experimental evidence of bifurcating NNMs in piecewise linear systems. Nonlinear Dyn. 63, 655–666 (2011)

    Article  Google Scholar 

  36. Casini, P., Giannini, O., Vestroni, F.: Persistent and ghost nonlinear normal modes in the forced response of non-smooth systems. Physica D Nonlinear Phenom. 241, 2058–2067 (2012)

    Article  MathSciNet  Google Scholar 

  37. Capecchi, D., Vestroni, F.: Asymptotic response of a two DOF elastoplastic system under harmonic excitation. Internal resonance case. Nonlinear Dyn. 7, 317–333 (1995)

    Article  Google Scholar 

  38. Masiani, R., Capecchi, D., Vestroni, F.: Resonant and coupled response of hysteretic two-degree-of-freedom systems using harmonic balance method. Int. J. Nonlinear Mech. 37, 1421–1434 (2002)

    Article  MATH  Google Scholar 

  39. Zhang, Y., Iwan, W.D.: Some observations on two piecewise-linear dynamic systems with induced hysteretic damping. Int. J. Nonlinear Mech. 38(5), 753–765 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vakakis, A.F.: Non-linear normal modes (NNMs) and their applications in vibration theory: an overview. Mech. Syst. Signal Process. 11(1), 3–22 (1997)

    Article  Google Scholar 

  41. Vakakis, A.F., Manevitch, L.I., Mikhlin, Y.V., Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Wiley, London (2008)

    MATH  Google Scholar 

  42. Vestroni, F., Luongo, A., Paolone, A.: A perturbation method for evaluating nonlinear normal modes of a piecewise linear two-degrees-of-freedom system. Nonlinear Dyn. 54(4), 379–393 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pak, C.H.: On the coupling of non-linear normal modes. Int. J. Nonlinear Mech. 41, 716–725 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Casini, P., Giannini, O., Vestroni, F.: Effect of damping on the nonlinear modal characteristics of a piecewice-smooth system through harmonic forced response. Mech. Syst. Signal Process. 36, 540–548 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the MIUR (Ministry of Education, University and Research) under the Project PRIN 2015-2018, “Identification and Monitoring of Complex Structural Systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Casini.

Additional information

This paper is dedicated to the memory of Franz Ziegler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casini, P., Vestroni, F. Nonlinear resonances of hysteretic oscillators. Acta Mech 229, 939–952 (2018). https://doi.org/10.1007/s00707-017-2039-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2039-5

Navigation