Advertisement

Acta Mechanica

, Volume 229, Issue 4, pp 1649–1686 | Cite as

Effect of boundary conditions in three alternative models of Timoshenko–Ehrenfest beams on Winkler elastic foundation

  • Isaac Elishakoff
  • Giulio Maria Tonzani
  • Alessandro Marzani
Original Paper

Abstract

In this paper we discuss about the free vibrations of a beam on Winkler foundation via original Timoshenko–Ehrenfest beam theory, as well as one of its truncated versions, and a model based on slope inertia. Differences between the three models are indicated. We analyze five different sets of boundary conditions, which are derived from the most typical end constraints: simply supported end, clamped end and free end. A detailed proof about the non-existence of zero frequencies for the free–free beam and for the simply supported–free beam is given. Differences between the models are indicated in the context of free vibrations of the beam on Winkler foundations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

First author acknowledges helpful discussion with Prof. Arkady Manevich of the Ukrainian Chemical Technology University, Dnepropetrovsk, Ukraine. We are thankful to two anonymous reviewers for providing insightful and constructive comments.

References

  1. 1.
    Abohadima, S., Taha, M., Abdeen, M.A.M.: General analysis of Timoshenko beam on elastic foundation, Hindawi Publishing Corporation. Math. Probl. Eng. 2015(182523), 1–11 (2015)CrossRefGoogle Scholar
  2. 2.
    Auciello, N.M.: Vibrations of Timoshenko beams on two-parameter elastic soil. Eng. Trans. 56(3), 187–200 (2008)MathSciNetGoogle Scholar
  3. 3.
    Bresse, J.A.A.: Cours de Mecanique Appliquee. Mallet-Bachelier, Paris (1859). (in French)zbMATHGoogle Scholar
  4. 4.
    Cazzani, A., Stochino, F., Turco, E.: On the whole spectrum of Timoshenko beams. Part I: a theoretical revisitation. Z. Angew. Math. Phys. 67(24), 1–30 (2016)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cazzani, A., Stochino, F., Turco, E.: On the whole spectrum of Timoshenko beams. Part II: further application. Z. Angew. Math. Phys. 67(25), 1–21 (2016)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams. Z. Angew. Math. Mech. (ZAMM)/J. Appl. Math. Mech. 96, 1220–1224 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Crandall, S.H.: The Timoshenko beam on elastic foundation. In: Proceedings of the Third Midwestern Conference on Solid Mechanics, pp. 146–159. The University of Michigan Press, Ann Arbor, MI (1957)Google Scholar
  8. 8.
    De Rosa, M.A.: Free vibrations of Timoshenko beams on two-parameter elastic foundation. Comput. Struct. 57(1), 151–156 (1995)CrossRefzbMATHGoogle Scholar
  9. 9.
    Downs, B.: Transverse vibration of a uniform simply supported Timoshenko beam without transverse deflection. J. Appl. Mech. 43(4), 671–674 (1976)CrossRefzbMATHGoogle Scholar
  10. 10.
    Elishakoff, I., Livshits, D.: Some closed-form solutions in random vibration of Timoshenko–Ehrenfest beams. Probab. Eng. Mech. 4(1), 49–54 (1989)CrossRefGoogle Scholar
  11. 11.
    Elishakoff, I.: An equation both more consistent and simpler than the Timoshenko–Ehrenfest equation. In: Advances in Mathematical Modeling and Experimental Methods for Materials and Structures, pp. 249–254. Springer, Dordrecht (2010)Google Scholar
  12. 12.
    Elishakoff, I., Kaplunov, J., Nolde, E.: Celebrating the centenary of Timoshenko’s study of effects of shear deformation and rotary inertia. Appl. Mech. Rev. 67(6), 060802 (2015)CrossRefGoogle Scholar
  13. 13.
    Elishakoff, I., Hache, F., Challamel, N.: Critical contrasting of three versions of vibrating Bresse–Timoshenko beam with a crack. Int. J. Solids Struct. 109, 143–151 (2017)CrossRefGoogle Scholar
  14. 14.
    Ghannadiasl, A., Mofid, M.: An analytical solution for free vibration of elastically restrained Timoshenko beam on an arbitrary variable Winkler foundation and under axial load. Lat. Am. J. Solids Struct. 12(13), 2417–2438 (2015)CrossRefGoogle Scholar
  15. 15.
    Goens, E.: Über die Bestimmung des Elastizitätsmodulus von Stäben mit Hifle von Biegungsschwingungen. Ann. Phys. 403(6), 649–678 (1931)CrossRefzbMATHGoogle Scholar
  16. 16.
    Hassan, M.T., Nassar, M.: Analysis of stressed Timoshenko beams on two parameters foundation. KSCE J. Civ. Eng. 19(1), 173–179 (2015)CrossRefGoogle Scholar
  17. 17.
    Huang, T.C.: The effect of rotary inertia and of shear deformation on the frequency and normal mode equations of uniform beams with simple end conditions. J. Appl. Mech. 28(4), 579–584 (1961)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kang, J.-H.: Exact characteristic equations in closed-form for vibration of completely free Timoshenko beams. Int. J. Struct. Stab. Dyn. 16(10), 1550078 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Malekzadeh, P., Karami, G., Farid, M.: DQEM for free vibration analysis of Timoshenko beams on elastic foundation. Comput. Mech. 31, 219–228 (2003)zbMATHGoogle Scholar
  20. 20.
    Manevich, A.I.: Transverse waves in a Timoshenko beam of visco-elastic material. Theor. Found. Civ. Eng. (Warsaw) 17, 217–228 (2009). (in Russian)Google Scholar
  21. 21.
    Manevich, A.I.: Dynamics of Timoshenko beam on linear and nonlinear foundation: phase relations, significance of the second spectrum, stability. J. Sound Vib. 334, 209–220 (2015)CrossRefGoogle Scholar
  22. 22.
    Muravsky, G.B.: Oscillation of the Timoshenko type beam lying on the elastic-hereditary foundation. Mekhanika Tverdogo Tela (Mechanics of Solids), 13(5):167–169 (1981) (in Russian)Google Scholar
  23. 23.
    Noga, S., Bogacz, R.: Free vibration of the Timoshenko beam interacting with the Winkler foundation. Symulacja w Badaniach I Rozw. 2(4), 209–223 (2011)Google Scholar
  24. 24.
    Obara, P.: Vibrations and stability of Bernoulli–Euler and Timoshenko beams on two-parameter elastic foundation. Arch. Civ. Eng. 60(4), 421–439 (2014)Google Scholar
  25. 25.
    Pielorz, A.: Discrete-continuous models in the analysis of low structures subject to kinematic excitations caused by transversal waves. J. Theor. Appl. Mech. 34(3), 547–566 (1996)Google Scholar
  26. 26.
    Rayleigh L. (J.W.S. Strut): The Theory of Sound. Macmillan, London (see also Dover, New York, 1945) (1878)Google Scholar
  27. 27.
    Sadeghian, M., Ekhterai, Toussi H.: Frequency analysis for a Timoshenko beam located on elastic foundation. Int. J. Eng. Trans. A Basics 24(1), 87–105 (2010)Google Scholar
  28. 28.
    Timoshenko, S.P.: A Course in Theory of Elasticity, Part II: Rods and Plates. “Kollins” Publishers, Petrograd (1916). (in Russian)Google Scholar
  29. 29.
    Timoshenko, S.P.: On the differential equation for the flexural vibrations of prismatical rods. Glas. Hrvat. Prir. Drus. 32(2), 55–57 (1920)Google Scholar
  30. 30.
    Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. 41, 744–746 (1921)CrossRefGoogle Scholar
  31. 31.
    Timoshenko, S.P.: History of Strength of Materials. With a Brief Account of the History of Theory of Elasticity and Theory of Structures. Dover Publications, New York (1953)zbMATHGoogle Scholar
  32. 32.
    Timoshenko, S.P.: A Course in Theory of Elasticity, 2nd edn. “Naukova Dumka” Publishers, Kiev (1972). (in Russian)Google Scholar
  33. 33.
    Vlasov, V.Z., Leontiev, U.N.: Beams, plates, and shells on elastic foundations, (translated from Russian). Israel Program for Scientific Translation, Jerusalem (1966)Google Scholar
  34. 34.
    Wang, C.M., Lam, K.Y., He, X.O.: Exact solution for Timoshenko beams on elastic foundations using Green’s functions. J. Struct. Mech. 26(1), 101–113 (1998)Google Scholar
  35. 35.
    Wang, Y.H., Tham, L.G., Cheung, Y.K.: Beams and plates on elastic foundations: a review. Prog. Struct. Eng. Mater. 7(4), 174–182 (2005)CrossRefGoogle Scholar
  36. 36.
    Wu, J.-S.: Analytical and Numerical Methods for Vibration Analyses, Section 2.12: Vibration of a Timoshenko Beam on the Elastic Foundation. Wiley, Singapore (2013)Google Scholar
  37. 37.
    Yerofeev, V.I., Kazhaev, V.V., Lisenkova, Y.Y., Semerikova, N.P.: Comparative analysis of dynamical behavior of beams in Bernoulli–Euler, Rayleigh and Timoshenko models lying on elastic foundation. Vestn. Nauchno-Tekhnicheskogo Razvit. Nizhnyi Novgorod 8(24), 18–26 (2009). (in Russian)Google Scholar
  38. 38.
    Yin, J.H.: Closed-form solution for reinforced Timoshenko beam on elastic foundation. J. Eng. Mech. 126(8), 868–874 (2000)CrossRefGoogle Scholar
  39. 39.
    Yokoyama, T.: Vibration analysis of Timoshenko beam-columns on two-parameter elastic foundations. Comput. Struct. 61(6), 995–1007 (1996)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Isaac Elishakoff
    • 1
  • Giulio Maria Tonzani
    • 2
  • Alessandro Marzani
    • 2
  1. 1.Department of Ocean and Mechanical EngineeringFlorida Atlantic UniversityBoca RatonUSA
  2. 2.Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Scuola di Ingegneria e ArchittetturaUniversitá di BolognaBolognaItaly

Personalised recommendations