Skip to main content
Log in

Frequency-dependent dielectric properties of BTO/parylene nanocomposites with layered structure

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

First the frequency-dependent dielectric spectrum of a self-assembled pure \(\hbox {BaTiO}_{3}\) (BTO) nanocrystalline thin film with consideration of the packing density is studied using the Lichtenecker logarithmic rule and the modified Kerner model. Then the Wiener lower bound is modified to evaluate the overall effective dielectric properties for 2–2 type of layered nanocomposites within a large frequency range, and a simple rule of mixture is found to be suitable for predicting the dielectric permittivity of multi-layered composites. The calculated dielectric properties of the BTO/parylene nanocomposites agree reasonably well with the experimental data, whereas a little discrepancy in the dielectric loss tangent is shown in the frequency range beyond \(10^{5 }\hbox {Hz}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, X., MacNaughton, S., Shrekenhamer, D.B., Tao, H., Selvarasah, S., Totachawattana, A., Averitt, R.D., Dokmeci, M.R., Sonkusale, S., Padilla, W.J.: Metamaterials on Parylene thin film substrates: design, fabrication and characterization at terahertz frequency. Appl. Phys. Lett. 96, 011906 (2010)

    Article  Google Scholar 

  2. Garnett, J.C.M.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. Ser. B 203, 385 (1904)

    Article  MATH  Google Scholar 

  3. Wagner, K.W.: Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen. Arch. Elektrotech. 2, 371–387 (1914)

    Article  Google Scholar 

  4. Dryden, J.S., Meakins, R.J.: Examples of the Maxwell–Wagner type of dielectric absorption using wool wax-water mixtures. Proc. Phys. Soc. B 70, 427–430 (1957)

    Article  Google Scholar 

  5. Jeffrey, D.J.: Extension of the Maxwell–Wagner equation for conducting dielectrics. J. Phys. D Appl. Phys. 9, L93 (1976)

    Article  Google Scholar 

  6. Wiener, O.: Lamellare Doppelbrechung. Phys. Z. 5, 332–338 (1904)

    MATH  Google Scholar 

  7. Von Hippel, R. (ed.): Dielectrics and Waves. Wiley, New York (1954)

  8. Mazur, K.: Polymer–ferroelectric ceramic composites. Plast. Eng. 28, 539–610 (1995)

    Google Scholar 

  9. Yamada, T., Ueda, T., Kitayama, T.: Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J. Appl. Phys. 53, 4328 (1982)

    Article  Google Scholar 

  10. Jayasundere, N., Smith, B.V.: Dielectric constant for binary piezoelectric 0–3 composites. J. Appl. Phys. 73, 2462–2466 (1993)

    Article  Google Scholar 

  11. Kim, P., Doss, N.M., Tillotson, J.P., Hotchkiss, P.J., Pan, M., Marder, S.R., Li, J., Calame, J.P., Perry, J.W.: High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3, 2581–2592 (2009)

    Article  Google Scholar 

  12. Huang, L.M., Liu, S.Y., van Tassel, B., Liu, X.H., Byro, A., Zhang, H.N., Leland, E., Akins, D., Steingart, D., Li, J., O’Brien, S.: Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant. Nanotechnology 24, 415602 (2013)

    Article  Google Scholar 

  13. Hossain, M.E., Liu, S.Y., O’Brien, S., Li, J.: Modeling of High-k dielectric nanocomposites. Acta Mech. 225, 1197–1209 (2014)

    Article  MATH  Google Scholar 

  14. Su, Y., Kang, H., Wang, Y., Li, J., Weng, G.J.: Intrinsic versus extrinsic effects of the grain boundary on the properties of ferroelectric nanoceramics. Phys. Rev. B 95, 054121 (2017)

    Article  Google Scholar 

  15. Jin, L.W., Su, Y.: Effect of thermomechanical coupling on the scaling behavior of low-frequency hysteresis of PbZr0.52Ti0.48O3 ceramics. Electron. Mater. Lett. 12(3), 371–375 (2016)

    Article  Google Scholar 

  16. Su, Y., Liu, N., Weng, G.J.: A phase field study of frequency dependence and grain-size effects in nanocrystalline ferroelectric polycrystals. Acta Materialia 87, 293–308 (2015)

    Article  Google Scholar 

  17. Liu, S.Y., Huang, L.M., Li, J., O’Brien, S.: Intrinsic dielectric frequency dependent spectrum of a single domain BaTiO\(_{3}\). J. Appl. Phys. 112, 014108 (2012)

    Article  Google Scholar 

  18. Huang, L.M., Zhang, J., Kymissis, L., O’Brien, S.: High k capacitors and OFET gate dielectrics from self-assembled BaTiO\(_{3 }\) and (Ba, Sr)TiO\(_{3}\) nanocrystals in the superparaelectric limit. Adv. Funct. Mater. 20, 554–560 (2010)

    Article  Google Scholar 

  19. Tanaka, T.: Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 12, 914–928 (2005)

    Article  Google Scholar 

  20. Zha, J., Dang, Z., Yang, T., Zhou, T., Song, H., Li, S.: Advanced dielectric properties of BaTiO3/polyvinylidene-fluoride nanocomposites with sandwich multi-layer structure. IEEE Trans. Dielectr. Electr. Insul. 19, 4 (2012)

    Article  Google Scholar 

  21. Lee, J.Y., Lee, J.H., Hong, S.H., Lee, Y.K., Choil, J.Y.: Coating BaTiO\(_{3}\) nanolayers on spherical Ni powders for multilayer ceramic capacitors. Adv. Mater. 15, 1655–1658 (2003)

    Article  Google Scholar 

  22. Ahn, C.H., Rabe, K.M., Triscone, J.M.: Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004)

    Article  Google Scholar 

  23. Chen, Z., O’Brien, S.: Structure direction by radius ratio of II–IV semiconductor quantum dot superlattices. ACS Nano. 2(6), 1219–1229 (2008)

    Article  Google Scholar 

  24. http://www.vp-scientific.com/parylene_properties.htm

  25. Kim, P., Doss, N.M., Tillotson, J.P., Hotchkiss, P.J., Pan, M., Marder, S.R., Li, J., Calame, J.P., Perry, J.W.: High energy density nanocomposites based on surface-modified BaTiO\(_{3}\) and a ferroelectric polymer. ACS Nano 3(9), 2581–2592 (2009)

    Article  Google Scholar 

  26. Fletcher, N.H., Hilton, A.D., Ricketts, B.W.: Optimization of energy storage density in ceramics capacitors. J. Phys. D Appl. Phys. 29, 253 (1996)

    Article  Google Scholar 

  27. Ortega, N., Kumar, A., et al.: Relaxor-ferroelectric superlattices: high energy density capacitors. J. Phys. Condens. Matter. 24, 445901 (2012)

    Article  Google Scholar 

  28. Reed, C.W., Cichanowski, S.W.: The Fundamentals of aging in HV polymer-film capacitors. IEEE Trans. Dielect. Elect. Insul. 1, 904 (1994)

    Article  Google Scholar 

  29. Rabuffi, M., Picci, G.: Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans. Plasma Sci. 30, 1939 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Li.

Additional information

This paper is dedicated to the memory of Franz Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.E., Li, J. Frequency-dependent dielectric properties of BTO/parylene nanocomposites with layered structure. Acta Mech 229, 929–937 (2018). https://doi.org/10.1007/s00707-017-2008-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2008-z

Navigation