Skip to main content

Advertisement

Log in

Long-time storage effects on shape memory alloy wires

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A rich literature studies shape memory alloy (SMA) wires for their potential use in dampers devices able to reduce wind, rain, and traffic-induced oscillations of stayed cables. Restrainers for bridges and improved aseismic devices also exploit alloy components. Thus, SMAs should be regarded as materials susceptible to storage in the yard. In this paper, the authors discuss the evolution of SMA macroscopic behavior as caused by a long-time storage of the product as acquired. The study discriminates between wires of different diameters, because the flat cycles shown by thin wires (i.e., diameter \(\le 0.5\,\hbox {mm}\)) and the non-classical S-shaped cycles of thick wires (of diameter 2.46 mm in this paper) answer differently to environmental modifications. The hysteretic behavior of some specimens of wires, of diameter 2.46 mm, is here investigated to mark the unpredictability of the consequence of a long-time storage, which could prevent from the practical exploitation of such alloys in civil engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khalid, B., Ziegler, F.: A novel aseismic foundation system for multipurpose asymmetric buildings. Arch. Appl. Mech. 82, 1423–1437 (2012). https://doi.org/10.1007/s00419-012-0667-8

    Article  MATH  Google Scholar 

  2. Auricchio, F., Faravelli, L., Magonette, G., et al.: Shape Memory Alloys: Advances in Modelling and Applications. CIMNE, Barcelona, Spain (2001)

    MATH  Google Scholar 

  3. Lexcellent, C.: Shape-Memory Alloys Handbook. Wiley-ISTE, New York (2013)

    Book  Google Scholar 

  4. Lecce, L., Concilio, A.: Shape Memory Alloy Engineering: For Aerospace, Structural and Biomedical Applications. Elsevier, Amsterdam (2014)

  5. Casciati, S., Faravelli, L.: Structural components in shape memory alloy for localized energy dissipation. Comput. Struct. 86, 330–339 (2008)

    Article  Google Scholar 

  6. Casciati, F., Faravelli, L., Fuggini, C.: Cable vibration mitigation by added SMA wires. Acta Mech. 195(1–4), 141–155 (2008)

    Article  MATH  Google Scholar 

  7. Casciati, F., Faravelli, L.: A passive control device with SMA components: from the prototype to the model. Struct. Control Health Monit. 16(7–8), 751–765 (2009)

    Google Scholar 

  8. Carreras, G., Casciati, F., Casciati, S., et al.: Fatigue laboratory tests toward the design of SMA portico braces. Smart Struct. Syst. 7(1), 41–57 (2011)

    Article  Google Scholar 

  9. Carreras, G., Casciati, S., Terriault, P., et al.: On the NiTi wires in dampers for stayed cables. Smart Struct. Syst. 13(3), 353–374 (2014)

    Article  Google Scholar 

  10. Barbarino, S., Saavedra Flores, E.I., Ajaj, R.M., et al.: A review on shape memory alloys with applications to morphing aircraft. Smart Mater. Struct. 23(6), 1–19 (2014)

    Article  Google Scholar 

  11. Saadat, S., Salichs, J., Noori, M., et al.: An overview of vibration and seismic applications of NiTi shape memory alloy. Smart Mater. Struct. 11, 218–229 (2002)

    Article  Google Scholar 

  12. Song, G., Maa, N., Li, H.N.: Applications of shape memory alloys in civil structures. Eng. Struct. 28, 1266–1274 (2006)

    Article  Google Scholar 

  13. Ozbulut, O.E., Hurlebaus, S., DesRoches, S.: Seismic response control using shape memory alloys: a review. J. Intell. Mater. Syst. Struct. 22(14), 1531–1549 (2011)

    Article  Google Scholar 

  14. Lovey, F.C., Torra, V.: Shape memory in Cu-based alloys: phenomenological behavior at the mesoscale level and interaction of martensitic transformation with structural defects in Cu-Zn-Al. Prog. Mater. Sci. 44(3), 189–289 (1999)

    Article  Google Scholar 

  15. Torra, V., Isalgue, A., Lovey, F.C., et al.: Shape memory alloys as an effective tool to damp oscillations. Study of the fundamental parameters required to guarantee technological applications. J. Therm. Anal. Calorim. 119(3), 1475–1533 (2015)

    Article  Google Scholar 

  16. Casciati, F., Casciati, S., Faravelli, L.: Fatigue characterization of a Cu-based shape memory alloy. Proc. Estonian Acad. Sci. Phys. 56(29), 207–217 (2007)

    MATH  Google Scholar 

  17. Casciati, S., Marzi, A.: Experimental studies on the fatigue life of shape memory alloy bars. Smart Struct. Syst. 6(1), 73–85 (2010)

    Article  Google Scholar 

  18. Faravelli, L., Marzi, A.: Coupling shape-memory alloy and embedded informatics toward a metallic self-healing material. Smart Mater. Syst. 6(9), 1041–1056 (2010)

    Article  Google Scholar 

  19. Casciati, S., Marzi, A.: Fatigue tests on SMA bars in span control. Eng. Struct. 33(4), 1232–1239 (2011)

    Article  Google Scholar 

  20. Casciati, F., Casciati, S., Faravelli, L.: Fatigue damage accumulation in a Cu-based shape memory alloy: preliminary investigation. CMC Comput. Mater. Continua 23(3), 287–306 (2011)

    MATH  Google Scholar 

  21. Casciati, S., Faravelli, L., Vece, M.: Investigation on the fatigue performance of Ni–Ti thin wires. Struct. Control Health Monit. 24(1), Article Number: UNSP e1855 (2017)

  22. Torra, V., Casciati, S., Vece, M.: Shape memory alloys wires: from small to medium diameter. In: Proceedings of CIMTEC 2016, 5th International Conference on Smart and Multifunctional Materials, Structures and Systems, Perugia, Italy (2016)

  23. Kustov, S., Pons, J., Cesari, E., et al.: Two-stage reverse transformation in hyperstabilized \(\beta _{1}^{\prime } \) martensite. Scripta Mater. 46, 817–22 (2002)

    Article  Google Scholar 

  24. Kustov, S., Pons, J., Cesari, E., et al.: Stabilization and hyperstabilization of Cu–Al–Be \(\beta _{1}^{\prime } \) martensite by thermal treatment and plastic deformation. Mater. Sci. Eng. A 378, 283–288 (2004)

    Article  Google Scholar 

  25. Sapozhnikov, K., Golyandin, S., Kustov, S., et al.: Defect assisted diffusion and kinetic stabilization in Cu–Al–Be \(\beta _{1}^{\prime } \) martensite. Mater. Sci. Eng. A 481–482, 532–537 (2008)

    Article  Google Scholar 

  26. Torra, V.: Personal Communication (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Faravelli.

Additional information

This paper is dedicated to the memory of Franz Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casciati, S., Faravelli, L. & Vece, M. Long-time storage effects on shape memory alloy wires. Acta Mech 229, 697–705 (2018). https://doi.org/10.1007/s00707-017-1993-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1993-2

Navigation