Skip to main content
Log in

Sandwiched droplet actuated by Marangoni force in a Hele-Shaw cell

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We present a novel method of actuating a microliter droplet held within a Hele-Shaw cell by means of the surface tension gradient or Marangoni effect. A food color droplet is first injected within the gap formed by the parallel plates to produce a cylindrical droplet, followed by a lateral injection of a lower surface tension droplet. Our results show the actuation of the food color droplet, for various droplet volumes and viscosities. Analytical studies on the effect of contact angle on distance traveled are presented. Numerical values of the Marangoni force show good agreement with analytical values. Mathematical analysis shows the surface tension difference required for actuation, and how the surface tension changes as a function of angular position on the droplet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paterson, L.: Radial fingering in a Hele Shaw cell. J. Fluid Mech. 113, 513–529 (1981)

    Article  Google Scholar 

  2. Faisal, T.F., Chevalier, S., Bernabe, Y., Juanes, R., Sassi, M.: Quantitative and qualitative study of density driven CO\(_2\) mass transfer in a vertical Hele-Shaw cell. Int. J. Heat Mass Transf. 81, 901–914 (2015)

    Article  Google Scholar 

  3. Wei, H.H., Waters, S.L., Liu, S.Q., Grotberg, J.B.: Flow in a wavy-walled channel lined with a poroelastic layer. J. Fluid Mech. 492, 23–45 (2003)

    Article  MATH  Google Scholar 

  4. Shen, B., Leman, M., Reyssat, M., Tabeling, P.: Dynamics of a small number of droplets in microfluidic Hele-Shaw cells. Exp. Fluids. 55, 1–10 (2014)

    Article  Google Scholar 

  5. Guo, X.-R., Young, W.-B.: A two-dimensional simulation model for the molded underfill process in flip chip packaging. J. Mech. Sci. Technol. 29, 2967–2974 (2015)

    Article  Google Scholar 

  6. Dhanabalan, A., van Duren, J.K.J., van Hal, P.A., van Dongen, J.L.J., Janssen, RsJ: Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells. Adv. Funct. Mater. 11, 255–262 (2001)

    Article  Google Scholar 

  7. Shad, S., Gates, I.D., Maini, B.B.: Investigation and visualization of liquid–liquid flow in a vertically mounted Hele-Shaw cell: flow regimes, velocity and shape of droplets. Meas. Sci. Technol. 20, 114005 (2009)

    Article  Google Scholar 

  8. Sullivan, M.T., Wilkins, D., Finley, E.S., Ward, T.: Gravity and capillary pressure-driven drainage in a vertical Hele-Shaw cell: thin film deposition. Chem. Eng. Sci. 109, 147–157 (2014)

    Article  Google Scholar 

  9. Eck, I.W., Siekmann, I.J.: On bubble motion in a Hele-Shaw cell, a possibility to study two-phase flows under reduced gravity. Ing. Arch. 47, 153–168 (1978)

    Article  MATH  Google Scholar 

  10. Amselem, G., Brun, P.T., Gallaire, F., Baroud, C.N.: Breaking anchored droplets in a microfluidic Hele-Shaw cell. Phys. Rev. Appl. 3, 054006 (2015)

    Article  Google Scholar 

  11. Huerre, A., Theodoly, O., Leshansky, A.M., Valignat, M.-P., Cantat, I., Jullien, M.-C.: Droplets in microchannels: dynamical properties of the lubrication film. Phys. Rev. Lett. 115, 064501 (2015)

    Article  Google Scholar 

  12. Brun, P.-T., Nagel, M., Gallaire, F.: Generic path for droplet relaxation in microfluidic channels. Phys. Rev. E 88, 043009 (2013)

    Article  Google Scholar 

  13. Oswald, P., Poy, G.: Droplet relaxation in Hele-Shaw geometry: application to the measurement of the nematic-isotropic surface tension. Phys. Rev. E 92, 062512 (2015)

    Article  Google Scholar 

  14. Köllner, T., Schwarzenberger, K., Eckert, K., Boeck, T.: Solutal Marangoni convection in a Hele-Shaw geometry: impact of orientation and gap width. Eur. Phys. J. Spec. Top. 224, 261–276 (2015)

    Article  Google Scholar 

  15. Chinaud, M., Voulgaropoulos, V., Angeli, P.: Surfactant effects on the coalescence of a drop in a Hele-Shaw cell. Phys. Rev. E 94, 033101 (2016). https://doi.org/10.1103/PhysRevE.94.033101

    Article  Google Scholar 

  16. Darhuber, A.A., Troian, S.M.: Principles of microfluidic actuation by modulation of surface stresses. Annu. Rev. Fluid Mech. 37, 425–455 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gomba, J.M., Homsy, G.M.: Regimes of thermocapillary migration of droplets under partial wetting conditions. J. Fluid Mech. 647, 125–142 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bratukhin, Y.K., Zuev, A.L.: Thermocapillary drift of an air bubble in a horizontal Hele-Shaw cell. Fluid Dyn. 19, 393–398 (1984)

    Article  Google Scholar 

  19. Lu, H.-W., Glasner, K., Bertozzi, A.L., Kim, C.-J.: A diffuse-interface model for electrowetting drops in a Hele-Shaw cell. J. Fluid Mech. 590, 411–435 (2007)

    Article  MATH  Google Scholar 

  20. Lee, J.S., Fung, Y.C.: Stokes flow around a circular cylindrical post confined between two parallel plates. J. Fluid Mech. 37, 657–670 (1969)

    Article  MATH  Google Scholar 

  21. Gallaire, F., Meliga, P., Laure, P., Baroud, C.N.: Marangoni induced force on a drop in a Hele Shaw cell. Phys. Fluids 26, 062105 (2014). (1994-Present)

    Article  Google Scholar 

  22. Abbyad, P., Dangla, R., Alexandrou, A., Baroud, C.N.: Rails and anchors: guiding and trapping droplet microreactors in two dimensions. Lab Chip 11, 813–821 (2011)

    Article  Google Scholar 

  23. Huebner, A., Bratton, D., Whyte, G., Yang, M., Abell, C., Hollfelder, F.: Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab Chip 9, 692–698 (2009)

    Article  Google Scholar 

  24. Song, H., Ismagilov, R.F.: Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J. Am. Chem. Soc. 125, 14613–14619 (2003)

    Article  Google Scholar 

  25. Yobas, L., Cheow, L.F., Tang, K.-C., Yong, S.-E., Ong, E.K.-Z., Wong, L., Teo, W.C.-Y., Ji, H., Rafeah, S., Yu, C.: A self-contained fully-enclosed microfluidic cartridge for lab on a chip. Biomed. Microdevices 11, 1279–1288 (2009)

    Article  Google Scholar 

  26. Rasband, W.S.: Image J. http://www.imagej.nih.gov/ij/

  27. Ahmed, G., Sellier, M., Jermy, M., Taylor, M.: Modeling the effects of contact angle hysteresis on the sliding of droplets down inclined surfaces. Eur. J. Mech. B Fluids 48, 218–230 (2014)

    Article  Google Scholar 

  28. http://web.mit.edu/1.061/www/dream/THREE/THREETHEORY.PDF

  29. Bico, J., Quéré, D.: Falling slugs. J. Colloid Interface Sci. 243, 262–264 (2001)

    Article  MATH  Google Scholar 

  30. Karpitschka, S., Pandey, A., Lubbers, L.A., Weijs, J.H., Botto, L., Das, S., Andreotti, B., Snoeijer, J.H.: Liquid drops attract or repel by the inverted Cheerios effect. Proc. Natl. Acad. Sci. 113, 7403–7407 (2016)

    Article  Google Scholar 

  31. COMSOL Multiphysics. COMSOL AB, Stockholm, Sweden (2015)

  32. Sellier, M., Nock, V., Gaubert, C., Verdier, C.: Droplet actuation induced by coalescence: experimental evidences and phenomenological modeling. Eur. Phys. J. Spec. Top. 219, 131–141 (2013)

    Article  Google Scholar 

  33. Sheely, M.L.: Glycerol viscosity tables. Ind. Eng. Chem. 24, 1060–1064 (1932)

    Article  Google Scholar 

  34. Ng, V.-V., Sellier, M., Nock, V.: Marangoni-induced actuation of miscible liquid droplets on an incline. Int. J. Multiph. Flow 82, 27–34 (2016)

    Article  Google Scholar 

  35. Sultan, E., Boudaoud, A., Amar, M.B.: Evaporation of a thin film: diffusion of the vapour and Marangoni instabilities. J. Fluid Mech. 543, 183–202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vazquez, G., Alvarez, E., Navaza, J.M.: Surface tension of alcohol water + water from 20 to 50 \(^{\circ }\)C. J. Chem. Eng. Data 40, 611–614 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Sellier.

Additional information

This paper is dedicated to the memory of Franz Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, VV., Sellier, M. & Nock, V. Sandwiched droplet actuated by Marangoni force in a Hele-Shaw cell. Acta Mech 229, 571–584 (2018). https://doi.org/10.1007/s00707-017-1986-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1986-1

Navigation