Skip to main content
Log in

On the plastic zone sizes of cracks interacting with multiple inhomogeneous inclusions in an infinite space

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The plastic zones of crack tips play a significant role in the fracture behavior of material. This paper proposes a semi-analytic solution for the plastic zones and stress distribution of an infinite space with multiple cracks and inhomogeneous inclusions under remote stress. In this solution, cracks can be treated as a distribution of edge dislocations with unknown densities according to the distributed dislocation technique, while inhomogeneous inclusions can be modeled as homogeneous inclusions with initial eigenstrain plus the unknown equivalent eigenstrain by using the equivalent inclusion method. These unknowns can be obtained by using the conjugate gradient method. The plastic zones ahead of crack tips are one-dimensional slender strips, and their sizes can be determined by canceling the stress intensity factor (SIF) due to the closure stress and that due to the applied load based on the Dugdale model of small-scale yielding. It is found that the plastic zones of crack tips are significantly affected by Young’s modulus and the positions of inhomogeneous inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kachanov, M.: Elastic solids with many cracks—a simple method of analysis. Int. J. Solids Struct. 23(1), 23–43 (1987)

    Article  MATH  Google Scholar 

  2. Xiao, Z.M., Yan, J., Chen, B.J.: Electro-elastic stress analysis for a Zener–Stroh crack interacting with a coated inclusion in a piezoelectric solid. Acta Mech. 171(1–2), 29–40 (2004)

    MATH  Google Scholar 

  3. Fang, Q.H., Liu, Y.W.: Size-dependent interaction between an edge dislocation and a nanoscale inhomogeneity with interface effects. Acta Mater. 54(16), 4213–20 (2006)

    Article  Google Scholar 

  4. Fang, Q.H., Jin, B., Liu, Y., Liu, Y.W.: Interaction between screw dislocations and inclusions with imperfect interfaces in fiber-reinforced composites. Acta Mech. 203(1–2), 113–25 (2009)

    Article  MATH  Google Scholar 

  5. Li, Z., Li, Y., Sun, J., Feng, X.Q.: An approximate continuum theory for interaction between dislocation and inhomogeneity of any shape and properties. J. Appl. Phys. 109(11), 113529 (2011)

    Article  Google Scholar 

  6. Zhou, K., Wei, R.B.: Modeling cracks and inclusions near surfaces under contact loading. Int. J. Mech. Sci. 83, 163–71 (2014)

    Article  Google Scholar 

  7. Zhou, K., Wei, R.B.: Multiple cracks in a half-space under contact loading. Acta Mech. 225(4–5), 1487–502 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong, Q.B., Zhou, K.: Multiple inhomogeneous inclusions and cracks in a half space under elastohydrodynamic lubrication contact. Int. J. Appl. Mech. 7(1), 1550003 (2015)

    Article  MathSciNet  Google Scholar 

  9. Dong, Q.B., Zhou, K.: Elastohydrodynamic lubrication modeling for materials with multiple cracks. Acta Mech. 225(12), 3395–408 (2014)

    Article  MATH  Google Scholar 

  10. Wang, X., Zhou, K.: An inclusion of arbitrary shape in an infinite or semi-infinite isotropic multilayered plate. Int. J. Appl. Mech. 6(1), 1450001 (2014)

    Article  MathSciNet  Google Scholar 

  11. Zhou, K.: Elastic field and effective moduli of periodic composites with arbitrary inhomogeneity distribution. Acta Mech. 223(2), 293–308 (2012)

    Article  MATH  Google Scholar 

  12. Zhou, K., Wei, R.B., Bi, G.J., Wang, X., Song, B., Feng, X.Q.: Semi-analytic solution of multiple inhomogeneous inclusions and cracks in an infinite space. Int. J. Comput. Methods 12(1), 1550002 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tao, Y.S., Fang, Q.H., Zeng, X., Liu, Y.W.: Influence of dislocation on interaction between a crack and a circular inhomogeneity. Int. J. Mech. Sci. 80, 47–53 (2014)

    Article  Google Scholar 

  14. Khan, S.M.A., Khraisheh, M.K.: Analysis of mixed mode crack initiation angles under various loading conditions. Eng. Fract. Mech. 67(5), 397–419 (2000)

    Article  Google Scholar 

  15. Khan, S.M.A., Khraisheh, M.K.: A new criterion for mixed mode fracture initiation based on the crack tip plastic core region. Int. J. Plast. 20(1), 55–84 (2004)

    Article  MATH  Google Scholar 

  16. Bian, L.C., Kim, K.S.: The minimum plastic zone radius criterion for crack initiation direction applied to surface cracks and through-cracks under mixed mode loading. Int. J. Fatigue 26(11), 1169–78 (2004)

    Article  MATH  Google Scholar 

  17. Golos, K., Wasiluk, B.: Role of plastic zone in crack growth direction criterion under mixed mode loading. Int. J. Fract. 102(4), 341–53 (2000)

    Article  Google Scholar 

  18. Achenbach, J.D., Keer, L.M., Khetan, R.P., Chen, S.H.: Loss of Adhesion at the Tip of an Interface Crack. J. Elast. 9(4), 397–424 (1979)

    Article  MATH  Google Scholar 

  19. Irwin, G.: Linear fracture mechanics, fracture transition, and fracture control. Eng. Fract. Mech. 1(2), 241–57 (1968)

    Article  Google Scholar 

  20. Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–4 (1960)

    Article  Google Scholar 

  21. Hoh, H.J., Xiao, Z.M., Luo, J.: On the plastic zone size and crack tip opening displacement of a Dugdale crack interacting with a circular inclusion. Acta Mech. 210(3–4), 305–14 (2010)

    Article  MATH  Google Scholar 

  22. Hoh, H.J., Xiao, Z.M., Luo, J.: On the plastic zone size and CTOD study for a Zener–Stroh crack interacting with a circular inclusion. Acta Mech. 220(1–4), 155–65 (2011)

    Article  MATH  Google Scholar 

  23. Yi, D.K., Xiao, Z.M., Zhuang, J., Sridhar, I.: On the plastic zone size and crack tip opening displacement of a sub-interface crack in an infinite bi-material plate. Philos. Mag. 91(26), 3456–72 (2011)

    Article  Google Scholar 

  24. Yi, D.K., Xiao, Z.M., Tan, S.K.: On the plastic zone size and the crack tip opening displacement of an interface crack between two dissimilar materials. Int. J. Fract. 176(1), 97–104 (2012)

    Article  Google Scholar 

  25. Hoh, H.J., Xiao, Z.M., Luo, J.: Plastic zone size and crack tip opening displacement of a Dugdale crack interacting with a coated circular inclusion. Philos. Mag. 90(26), 3511–30 (2010)

    Article  MATH  Google Scholar 

  26. Fan, M., Xiao, Z.M., Luo, J.: On the plastic zone correction of a Zener–Stroh crack interacting with a nearby inhomogeneity and an edge dislocation. Acta Mech. 226(12), 4173–88 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fan, M., Yi, D., Xiao, Z.: An interfacial arc-shaped Zener–Stroh crack due to inclusion-matrix debonding in composites. Acta Mech. 225(3), 909–18 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fan, M., Yi, D.K., Xiao, Z.M.: Elastic–Plastic fracture behavior analysis on a Griffith crack in the cylindrical three-phase composites with generalized Irwin model. Int. J. Appl. Mech. 6(4), 1450045 (2014)

    Article  Google Scholar 

  29. Fan, M., Yi, D.K., Xiao, Z.M.: Elastic–plastic stress investigation for an arc-shaped interface crack in composite material. Int. J. Mech. Sci. 83, 104–11 (2014)

    Article  Google Scholar 

  30. Fan, M., Yi, D.K., Xiao, Z.M.: A Zener–Stroh crack in fiber-reinforced composites with generalized Irwin plastic zone correction. Int. J. Mech. Sci. 82, 81–9 (2014)

    Article  Google Scholar 

  31. Fan, M., Yi, D.K., Xiao, Z.M.: Generalized Irwin plastic zone correction for a Griffith crack near a coated-circular inclusion. Int. J. Damage Mech. 24(5), 663–82 (2015)

    Article  Google Scholar 

  32. Fan, M., Yi, D.K., Xiao, Z.M.: Fracture behavior investigation on an arbitrarily oriented sub-interface Zener–Stroh crack. Acta Mech. 226(5), 1591–603 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jing, P.H., Khraishi, T., Gorbatikh, L.: Closed-form solutions for the mode II crack tip plastic zone shape. Int. J. Fract. 122(3–4), L137–L42 (2003)

    Article  Google Scholar 

  34. Feng, X.Q., Li, H.Y., Yu, S.W.: A simple method for calculating interaction of numerous microcracks and its applications. Int. J. Solids Struct. 40(2), 447–64 (2003)

    Article  MATH  Google Scholar 

  35. Anderson, T.L., Anderson, T.: Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  36. Murakami, Y.: Stress Intensity Factors Handbook, 1st edn. Pergamon, Oxford (1987)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by Singapore Maritime Institute (Grant No: SMI-2014-MA11) and the National Natural Science Foundation of China (Grant No: 11472200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zhou.

Additional information

This paper is dedicated to the memory of Franz Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Fan, Q., Zeng, L. et al. On the plastic zone sizes of cracks interacting with multiple inhomogeneous inclusions in an infinite space. Acta Mech 229, 497–514 (2018). https://doi.org/10.1007/s00707-017-1983-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1983-4

Navigation