Skip to main content
Log in

Nonlinear instability of hydrostatic pressurized microtubules surrounded by cytoplasm of a living cell including nonlocality and strain gradient microsize dependency

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

As one of the most important components of a cytoskeleton, microtubules made from tubular polymers of tubulin can be found throughout the cytoplasm of eukaryotic cells. The role of microtubules in maintaining the structures of a living cell under external mechanical load is essential, so it is necessary to anticipate their size-dependent mechanical characteristics. In the present study, the size-dependent nonlinear instability of microtubules embedded in the biomedium of a living cell and under hydrostatic pressure is analyzed at different temperatures. For this objective, a more comprehensive size-dependent elasticity theory such as nonlocal strain gradient theory of elasticity is implemented to a refined hyperbolic shear deformation shell theory. Through deduction of the nonclassical governing equations to boundary layer-type ones and then employing a two-stepped perturbation solving process, explicit analytical expressions are established for nonlocal strain gradient stability paths of hydrostatic pressurized microtubules surrounded by the cytoplasm of a living cell. It is observed that for a microtubule under hydrostatic pressure, an initial extension occurs in the prebuckling regime until the critical buckling pressure. The nonlocality size effect decreases this initial extension, but the strain gradient size dependency increases it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Venier, P., Maggs, A.C., Carlier, M.F., Pantaloni, D.: Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations. J. Biol. Chem. 269, 13353–13360 (1994)

    Google Scholar 

  2. Kurachi, M., Hoshi, M., Tashiro, H.: Buckling of a single microtubule by optical trapping forces—direct measurement of microtubule rigidity. Cell Motil. Cytoskelet. 30, 221–228 (1995)

    Article  Google Scholar 

  3. Fygenson, D.K., Marko, J.F., Libchaber, A.: Mechanics of microtubule-based membrane extension. Phys. Rev. Lett. 79, 4497–4500 (1997)

    Article  Google Scholar 

  4. Odde, D.J., Ma, L., Briggs, A.H., DeMarco, A., Kirschner, M.W.: Microtubule bending and breaking in living fibroblast cells. J. Cell Sci. 112, 3283–3288 (1999)

    Google Scholar 

  5. Yi, D., Wang, T.C., Xiao, Z.: Strain gradient theory based on a new framework of non-local model. Acta Mech. 212, 51–67 (2010)

    Article  MATH  Google Scholar 

  6. Fu, Y., Zhang, J., Jiang, Y.: Influences of the surface energies on the nonlinear static and dynamic behaviors of nanobeams. Physica E 42, 2268–2273 (2010)

    Article  Google Scholar 

  7. Akgoz, B., Civalek, O.: Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49, 1268–1280 (2011)

    Article  MathSciNet  Google Scholar 

  8. Wang, B., Zhou, S., Zhao, J., Chen, X.: A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. Eur. J. Mech. A. Solids 30, 517–524 (2011)

    Article  MATH  Google Scholar 

  9. Akgoz, B., Civalek, O.: Application of strain gradient elasticity theory for buckling analysis of protein microtubules. Curr. Appl. Phys. 11, 1133–1138 (2011)

    Article  Google Scholar 

  10. Karimi Zeverdejani, M., Tadi Beni, Y.: The nano scale vibration of protein microtubules based on modified strain gradient theory. Curr. Appl. Phys. 13, 1566–1576 (2013)

    Article  Google Scholar 

  11. Demir, C., Civalek, O.: Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Appl. Math. Model. 37, 9355–9367 (2013)

    Article  Google Scholar 

  12. Kiani, K.: Longitudinal, transverse, and torsional vibrations and stabilities of axially moving single-walled carbon nanotubes. Curr. Appl. Phys. 13, 1651–1660 (2013)

    Article  Google Scholar 

  13. Akgoz, B., Civalek, O.: Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity. Struct. Eng.Mech. 48, 195–205 (2013)

    Article  MATH  Google Scholar 

  14. Gao, F., Cheng, Q., Luo, J.: Mechanics of nanowire buckling on elastomeric substrates with consideration of surface stress effects. Physica E 64, 72–77 (2014)

    Article  Google Scholar 

  15. Radic, N., Jeremic, D., Trifkovic, S., Milutinovic, M.: Buckling analysis of double-orthotropic nanoplates embedded in Pasternak elastic medium using nonlocal elasticity theory. Compos. B Eng. 61, 162–171 (2014)

    Article  Google Scholar 

  16. Sahmani, S., Bahrami, M., Aghdam, M.M., Ansari, R.: Postbuckling behavior of circular higher-order shear deformable nanoplates including surface energy effects. Appl. Math. Model. 39, 3678–3689 (2015)

    Article  MathSciNet  Google Scholar 

  17. Gao, X.-L.: A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mech. 226, 457–474 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lou, J., He, L., Wu, H., Du, J.: Pre-buckling and buckling analyses of functionally graded microshells under axial and radial loads based on the modified couple stress theory. Compos. Struct. 142, 226–237 (2016)

    Article  Google Scholar 

  19. Akgoz, B., Civalek, O.: Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory. Acta Astronaut. 119, 1–12 (2016)

    Article  Google Scholar 

  20. Kiani, K.: Column buckling of doubly parallel slender nanowires carrying electric current acted upon by a magnetic field. J. Phys. Chem. Solids 95, 89–97 (2016)

    Article  Google Scholar 

  21. Sahmani, S., Aghdam, M.M., Akbarzadeh, A.H.: Size-dependent buckling and postbuckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load. Mater. Des. 105, 341–351 (2016)

    Article  Google Scholar 

  22. Sahmani, S., Fattahi, A.M.: Development an efficient calibrated nonlocal plate model for nonlinear axial instability of zirconia nanosheets using molecular dynamics simulation. J. Mol. Graph. Model. 75, 20–31 (2017)

    Article  Google Scholar 

  23. Sahmani, S., Aghdam, M.M.: Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments. Arch. Civil Mech. Eng. 17, 623–638 (2017)

    Article  Google Scholar 

  24. Sahmani, S., Fattahi, A.M.: Calibration of developed nonlocal anisotropic shear deformable plate model for uniaxial instability of 3D metallic carbon nanosheets using MD simulations. Comput. Methods Appl. Mech. Eng. 322, 187–207 (2017)

    Article  MathSciNet  Google Scholar 

  25. Hosseini, M., Dini, A., Eftekhari, M.: Strain gradient effects on the thermoelastic analysis of a functionally graded micro-rotating cylinder using generalized differential quadrature method. Acta Mech. 228, 1563–1580 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sahmani, S., Aghdam, M.M., Bahrami, M.: Nonlinear buckling and postbuckling behavior of cylindrical shear deformable nanoshells subjected to radial compression including surface free energy effects. Acta Mech. Solida Sin. 30, 209–222 (2017)

    Article  Google Scholar 

  27. Taghipour, Y., Hosseini, G., Baradaran, H.: Large deflection analysis of nanowires based on nonlocal theory using total Lagrangian finite element method. Acta Mech. 228, 2429–2442 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sahmani, S., Aghdam, M.M., Bahrami, M.: Surface free energy effects on the postbuckling behavior of cylindrical shear deformable nanoshells under combined axial and radial compressions. Meccanica 52, 1329–1352 (2017)

    Article  MathSciNet  Google Scholar 

  29. Ebrahimi, F., Barati, M.R.: Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects. Acta Mech. 228, 1197–1210 (2017)

    Article  MathSciNet  Google Scholar 

  30. Shen, H.-S.: Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium. Biomech. Model. Mechanobiol. 9, 345–357 (2010)

    Article  Google Scholar 

  31. Li, H., Xiong, J.T., Wang, X.: The coupling frequency of bioliquid-filled microtubules considering small scale effects. Eur. J. Mech. A. Solids 39, 11–16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Daneshmand, F., Farokhi, H., Amabili, M.: A higher-order mathematical modeling for dynamic behavior of protein microtubule shell structures including shear deformation and small-scale effects. Math. Biosci. 252, 67–82 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, X., Yang, W.D., Xiong, J.T.: Coupling effects of initial stress and scale characteristics on the dynamic behavior of bioliquid-filled microtubules immersed in cytosol. Physica E 56, 342–347 (2014)

    Article  Google Scholar 

  34. Ghorbanpour Arani, A., Abdollahian, M., Jalaei, M.H.: Vibration of bioliquid-filled microtubules embedded in cytoplasm including surface effects using modified couple stress theory. J. Theor. Biol. 367, 29–38 (2015)

    Article  MathSciNet  Google Scholar 

  35. Civalek, O., Demir, C.: A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Appl. Math. Comput. 289, 335–352 (2016)

    MathSciNet  Google Scholar 

  36. Sahmani, S., Aghdam, M.M.: Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory. J. Theor. Biol. 422, 59–71 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, L., Hu, Y., Li, X.: Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. Int. J. Mech. Sci. 115–116, 135–144 (2016)

    Article  Google Scholar 

  39. Yang, W.D., Yang, F.P., Wang, X.: Coupling influences of nonlocal stress and strain gradients on dynamic pull-in of functionally graded nanotubes reinforced nano-actuator with damping effects. Sens. Actuators A 248, 10–21 (2016)

    Article  Google Scholar 

  40. Li, L., Hu, Y.: Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2016)

    Article  MathSciNet  Google Scholar 

  41. Tang, Y., Liu, Y., Zhao, D.: Viscoelastic wave propagation in the viscoelastic single walled carbon nanotubes based on nonlocal strain gradient theory. Physica E 84, 202–208 (2016)

    Article  Google Scholar 

  42. Ebrahimi, F., Barati, M.R.: Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory. Compos. Struct. 159, 433–444 (2017)

    Article  Google Scholar 

  43. Sahmani, S., Aghdam, M.M.: Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams. Compos. Struct. 179, 77–88 (2017)

    Article  Google Scholar 

  44. Li, L., Hu, Y.: Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects. Int. J. Mech. Sci. 120, 159–170 (2017)

    Article  Google Scholar 

  45. Zhu, X., Li, L.: Closed form solution for a nonlocal strain gradient rod in tension. Int. J. Eng. Sci. 119, 16028 (2017)

    Article  MathSciNet  Google Scholar 

  46. Sawant, M.K., Dahake, A.G.: A new hyperbolic shear deformation theory for analysis of thick beam. Int. J. Innov. Res. Sci. Eng. Technol. 3, 9636–9643 (2014)

    Google Scholar 

  47. Donnell, L.H.: Beam, Plates and Shells, pp. 377–445. McGraw-Hill, New York (1976)

    Google Scholar 

  48. Shen, H.-S.: Boundary layer theory for the buckling and postbuckling of an anisotropic laminated cylindrical shell. Part I: Prediction under axial compression. Composite Structures 82, 346–361 (2008)

    Article  Google Scholar 

  49. Shen, H.-S.: Postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium. Int. J. Mech. Sci. 51, 372–383 (2009)

    Article  Google Scholar 

  50. Shen, H.-S., Xiang, Y.: Postbuckling of axially compressed nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments. Compos. B Eng. 67, 50–61 (2014)

    Article  Google Scholar 

  51. Sahmani, S., Aghdam, M.M.: A nonlocal strain gradient hyperbolic shear deformable shell model for radial postbuckling analysis of functionally graded multilayer GPLRC nanoshells. Compos. Struct. 178, 97–109 (2017)

    Article  Google Scholar 

  52. Sahmani, S., Aghdam, M.M.: Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. Int. J. Mech. Sci. 131–132, 95–106 (2017)

    Article  Google Scholar 

  53. Sahmani, S., Fattahi, A.M.: Nonlocal size dependency in nonlinear instability of axially loaded exponential shear deformable FG-CNT reinforced nanoshells under heat conduction. Eur. Phys. J. Plus 132, 231 (2017)

    Article  Google Scholar 

  54. Shi, Y.J., Guo, W.L., Ru, C.Q.: Relevance of Timoshenko-beam model to microtubules of low shear modulus. Physica E 41, 213–219 (2008)

    Article  Google Scholar 

  55. Kasagi, A., Sridharan, S.: Buckling and postbuckling analysis of thick composite cylindrical shells under hydrostatic pressure. Compos. Eng. 3, 467–487 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sahmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahmani, S., Aghdam, M.M. Nonlinear instability of hydrostatic pressurized microtubules surrounded by cytoplasm of a living cell including nonlocality and strain gradient microsize dependency. Acta Mech 229, 403–420 (2018). https://doi.org/10.1007/s00707-017-1978-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1978-1

Navigation