Skip to main content
Log in

Slow rotation of a spherical particle inside an elastic tube

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, we present an analytical calculation of the rotational mobility functions of a particle rotating on the centerline of an elastic cylindrical tube whose membrane exhibits resistance toward shearing and bending. We find that the correction to the particle rotational mobility about the cylinder axis depends solely on membrane shearing properties, while both shearing and bending manifest themselves for the rotational mobility about an axis perpendicular to the cylinder axis. In the quasi-steady limit of vanishing frequency, the particle rotational mobility nearby a no-slip rigid cylinder is recovered only if the membrane possesses a non-vanishing resistance toward shearing. We further show that for the asymmetric rotation along the cylinder radial axis a coupling between shearing and bending exists. Our analytical predictions are compared and validated with corresponding boundary integral simulations where a very good agreement is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharp, K., Fine, R., Schulten, K., Honig, B.: Brownian dynamics simulation of diffusion to irregular bodies. J. Phys. Chem 91, 3624–3631 (1987)

    Article  Google Scholar 

  2. Hernandez-Ortiz, J.P., Stoltz, C.G., Graham, M.D.: Transport and collective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett. 95(20), 204501 (2005)

    Article  Google Scholar 

  3. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1. Springer, Berlin (2012)

    MATH  Google Scholar 

  4. Cichocki, B., Felderhof, B.U.: Short-time diffusion coefficients and high frequency viscosity of dilute suspensions of spherical Brownian particles. J. Chem. Phys. 89(2), 1049–1054 (1988)

    Article  Google Scholar 

  5. Cichocki, B., Ekiel-Jeżewska, M.L., Wajnryb, E.: Lubrication corrections for three-particle contribution to short-time self-diffusion coefficients in colloidal dispersions. J. Chem. Phys. 111(7), 3265–3273 (1999)

    Article  Google Scholar 

  6. Długosz, M., Antosiewicz, J.M.: Toward an accurate modeling of hydrodynamic effects on the translational and rotational dynamics of biomolecules in many-body systems. J. Phys. Chem. B 119(26), 8425–8439 (2015)

    Article  Google Scholar 

  7. Squires, T.M., Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(July), 977 (2005)

    Article  Google Scholar 

  8. Wang, C., Rallabandi, B., Hilgenfeldt, S.: Frequency dependence and frequency control of microbubble streaming flows. Phys. Fluids 25(2), 022002 (2013)

    Article  Google Scholar 

  9. Frey-Wyssling, A. (ed.): Deformation and Flow in Biological Systems. North-Holland Publishing Co., Amsterdam (1952)

  10. Shadwick, R.E.: Mechanical design in arteries. J. Exp. Biol. 202(23), 3305–3313 (1999)

    Google Scholar 

  11. Caro, C.G., Pedley, T.J., Schroter, R.C., Seed, W.A.: The Mechanics of the Circulation, 2nd edn. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  12. Faxén, H.: Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist. Ann. Phys. 373(10), 89–119 (1922)

  13. Wakiya, S.: A spherical obstacle in the flow of a viscous fluid through a tube. J. Phys. Soc. Jpn. 8(2), 254–256 (1953)

    Article  MathSciNet  Google Scholar 

  14. Faxén, H.: About T. Bohlin’s paper: On the drag on rigid spheres, moving in a viscous liquid inside cylindrical tubes. Colloid Polym. Sci. 167(2), 146–146 (1959)

    Google Scholar 

  15. Bohlin, T.: On the drag on a rigid sphere moving in a viscous liquid inside a cylindrical tube. Trans. R. Inst. Technol. Stockh. 155, 64 (1960)

    MathSciNet  MATH  Google Scholar 

  16. Greenstein, T.: Theoretical Study of the Motion of One or More Spheres and a Fluid in an Infinitely Long Circular Cylinder. Ph.D. thesis (1967)

  17. Greenstein, T., Happel, J.: Theoretical study of the slow motion of a sphere and a fluid in a cylindrical tube. J. Fluid Mech. 34(04), 705–710 (1968)

    Article  MATH  Google Scholar 

  18. Sano, O.: Mobility of a small sphere in a viscous fluid confined in a rigid circular cylinder of finite length. J. Phys. Soc. Jpn. 56(8), 2713–2720 (1987)

    Article  Google Scholar 

  19. Zimmerman, W.B.: On the resistance of a spherical particle settling in a tube of viscous fluid. Int. J. Eng. Sci. 42(17), 1753–1778 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Leichtberg, S., Pfeffer, R., Weinbaum, S.: Stokes flow past finite coaxial clusters of spheres in a circular cylinder. Int. J. Multiph. Flow 3, 147 (1976)

    Article  MATH  Google Scholar 

  21. Yeh, H.Y., Keh, H.J.: Axisymmetric creeping motion of a prolate particle in a cylindrical pore. Eur. J. Mech. B Fluid 39, 52–58 (2013)

    Article  MATH  Google Scholar 

  22. Hasimoto, H.: Slow motion of a small sphere in a cylindrical domain. J. Phys. Soc. Jpn. 41(6), 2143–2144 (1976)

    Article  Google Scholar 

  23. Haberman, W.L.: Flow About a Sphere Rotating in a Viscous Liquid Inside a Coaxially Rotating Cylinder. David Taylor Model Basin Report No. 1578., US Navy Dept., Washington DC (1961)

  24. Brenner, H., Sonshine, R.M.: Slow viscous rotation of a sphere in a circular cylinder. Quart. J. Mech. Appl. Math. 17(1), 55–63 (1964)

    Article  MATH  Google Scholar 

  25. Brenner, H.: Slow viscous rotation of an axisymmetric body within a circular cylinder of finite length. Appl. Sci. Res. Sect. A 13(1), 81–120 (1964)

    Article  MATH  Google Scholar 

  26. Greenstein, T., Som, T.J.: Frictional force exerted on a slowly rotating eccentrically positioned sphere inside a circular cylinder. Phys. Fluids 19(1), 161–162 (1976)

    Article  Google Scholar 

  27. Greenstein, T., Schiavina, G.L.: Torque exerted on a slowly rotating eccentrically positioned sphere within an infinitely long circular cylinder. Int. J. Multiph. Flow 2(3), 353–355 (1975)

    Article  Google Scholar 

  28. Greenstein, T., Happel, J.: The slow motion of two particles symmetrically placed about the axis of a circular cylinder in a direction perpendicular to their line of centers. Appl. Sci. Res. 22(1), 345–359 (1970)

    Article  Google Scholar 

  29. Hirschfeld, B.R.: A Theoretical Study of the Slow Asymmetric Settling of an Arbitrarily-Positioned Particle in a Circular Cylinder. Ph.D. thesis (1972)

  30. Hirschfeld, B.R., Brenner, H., Falade, A.: First-and second-order wall effects upon the slow viscous asymmetric motion of an arbitrarily-shaped,-positioned and-oriented particle within a circular cylinder. Physicochem. Hydrodyn. 5, 99–133 (1984)

    Google Scholar 

  31. Tözeren, H.: Torque on eccentric spheres flowing in tubes. J. Appl. Mech. 49(2), 279–283 (1982)

    Article  MATH  Google Scholar 

  32. Tözeren, H.: Boundary integral equation method for some Stokes problems. Int. J. Num. Methods Fluids 4(2), 159–170 (1984)

  33. Tözeren, H.: Drag on eccentrically positioned spheres translating and rotating in tubes. J. Fluid Mech. 129, 77–90 (1983)

    Article  MATH  Google Scholar 

  34. Chen, S.B.: Axisymmetric creeping motion of particles towards a circular orifice or disk. Phys. Fluids (1994-present) 25(4), 043106 (2013)

    Article  Google Scholar 

  35. O’Neill, M.E.: On the modelling of particle-body interactions in Stokes flows involving a sphere and circular disc or a torus and circular cylinder using point singularities. Chem. Eng. Commun. 148(1), 161–182 (1996)

  36. Rubinow, S.I., Keller, J.B.: Flow of a viscous fluid through an elastic tube with applications to blood flow. J. Theor. Biol. 35(2), 299–313 (1972)

    Article  Google Scholar 

  37. Fung, Y.-C.: Biomechanics: Circulation. Springer, Berlin (2013)

    Google Scholar 

  38. Bertram, C.D., Raymond, C.J., Butcher, K.S.A.: Oscillations in a collapsed-tube analog of the brachial artery under a sphygmomanometer cuff. J. Biomech. Eng. 111(3), 185–191 (1989)

    Article  Google Scholar 

  39. Shankar, V.: Stability of fluid flow through deformable neo-Hookean tubes. J. Fluid Mech. 627, 291–322 (2009)

  40. Shankar, V.: Stability of pressure-driven flow in a deformable neo-Hookean channel. J. Fluid Mech. 659, 318–350 (2010)

  41. Grotberg, J.B.: Respiratory fluid mechanics and transport processes. Annu. Rev. Biomed. Eng. 3(1), 421–457 (2001)

    Article  Google Scholar 

  42. Grotberg, J.B., Jensen, O.E.: Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36(1), 121 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Canic, S., Tambaca, J., Guidoboni, G., Mikelic, A., Hartley, C.J., Rosenstrauch, D.: Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. SIAM J. Appl. Math. 67(1), 164–193 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Stone, H.A., Stroock, A.D., Ajdari, A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)

    Article  MATH  Google Scholar 

  45. Holmes, D.P., Tavakol, B., Froehlicher, G., Stone, H.A.: Control and manipulation of microfluidic flow via elastic deformations. Soft Matter 9(29), 7049–7053 (2013)

    Article  Google Scholar 

  46. Nahar, S., Jeelani, S.A.K., Windhab, E.J.: Influence of elastic tube deformation on flow behavior of a shear thinning fluid. Chem. Eng. Sci. 75, 445–455 (2012)

    Article  Google Scholar 

  47. Nahar, S., Jeelani, S.A.K., Windhab, E.J.: Prediction of velocity profiles of shear thinning fluids flowing in elastic tubes. Chem. Eng. Commun. 200(6), 820–835 (2013)

    Article  Google Scholar 

  48. Mikelic, A., Guidoboni, G., Canic, S.: Fluid-structure interaction in a pre-stressed tube with thick elastic walls i: the stationary Stokes problem. Netw. Heterog. Media 2(3), 397 (2007)

  49. Marzo, A., Luo, X.Y., Bertram, C.D.: Three-dimensional collapse and steady flow in thick-walled flexible tubes. J. Fluid Struct. 20(6), 817–835 (2005)

    Article  Google Scholar 

  50. Ramanujan, S., Pozrikidis, C.: Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J. Fluid Mech. 361, 117–143 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Barthès-Biesel, D.: Modeling the motion of capsules in flow. Curr. Opin. Colloid Interface Sci. 16(1), 3–12 (2011)

    Article  Google Scholar 

  52. Lac, E., Barthès-Biesel, D., Pelekasis, N.A., Tsamopoulos, J.: Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling. J. Fluid Mech. 516, 303–334 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Barthès-Biesel, D.: Motion and deformation of elastic capsules and vesicles in flow. Annu. Rev. Fluid Mech. 48, 25–52 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Helfrich, W.: Elastic properties of lipid bilayers - theory and possible experiments. Z. Naturf. C. 28, 693 (1973)

    Article  Google Scholar 

  55. Zhong-Can, O.-Y., Helfrich, W.: Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 39(10), 5280 (1989)

    Article  Google Scholar 

  56. Guckenberger, A., Gekle, S.: Theory and algorithms to compute Helfrich bending forces: a review. J. Phys. Condens. Matter 29, 203001 (2017)

    Article  Google Scholar 

  57. Felderhof, B.U.: Effect of surface tension and surface elasticity of a fluid-fluid interface on the motion of a particle immersed near the interface. J. Chem. Phys. 125(14), 144718 (2006)

    Article  Google Scholar 

  58. Felderhof, B.U.: Effect of surface elasticity on the motion of a droplet in a viscous fluid. J. Chem. Phys. 125(12), 124904 (2006)

    Article  Google Scholar 

  59. Daddi-Moussa-Ider, A., Guckenberger, A., Gekle, S.: Long-lived anomalous thermal diffusion induced by elastic cell membranes on nearby particles. Phys. Rev. E 93, 012612 (2016)

    Article  Google Scholar 

  60. Daddi-Moussa-Ider, A., Gekle, S.: Hydrodynamic interaction between particles near elastic interfaces. J. Chem. Phys. 145(1), 014905 (2016)

    Article  Google Scholar 

  61. Daddi-Moussa-Ider, A., Lisicki, M., Gekle, S.: Mobility of an axisymmetric particle near an elastic interface. J. Fluid Mech. 811, 210–233 (2017)

    Article  MathSciNet  Google Scholar 

  62. Daddi-Moussa-Ider, A., Guckenberger, A., Gekle, S.: Particle mobility between two planar elastic membranes: Brownian motion and membrane deformation. Phys. Fluids 28(7), 071903 (2016)

    Article  Google Scholar 

  63. Daddi-Moussa-Ider, A., Gekle, S.: Axisymmetric motion of a solid particle nearby a spherical elastic membrane. Phys. Rev. E 95, 013108 (2017)

    Article  Google Scholar 

  64. Daddi-Moussa-Ider, A., Lisicki, M., Gekle, S.: Hydrodynamic mobility of a solid particle near a spherical elastic membrane. II. Asymmetric motion. Phys. Rev. E 95(5), 053117 (2017)

    Article  Google Scholar 

  65. Blake, J.R.: A note on the image system for a Stokeslet in a no-slip boundary. Math. Proc. Camb. Philos. Soc. 70(02), 303–310 (1971)

    Article  MATH  Google Scholar 

  66. Sekimoto, K., Leibler, L.: A mechanism for shear thickening of polymer-bearing surfaces: elasto-hydrodynamic coupling. EPL 23(2), 113 (1993)

    Article  Google Scholar 

  67. Weekley, S.J., Waters, S.L., Jensen, O.E.: Transient elastohydrodynamic drag on a particle moving near a deformable wall. Q. J. Mech. Appl. Math. 59(2), 277–300 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  68. Salez, T., Mahadevan, L.: Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall. J. Fluid Mech. 779, 181–196 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. Saintyves, B., Jules, T., Salez, T., Mahadevan, L.: Self-sustained lift and low friction via soft lubrication. Proc. Natl. Acad. Sci. 113(21), 5847–5849 (2016)

    Article  Google Scholar 

  70. Rallabandi, B., Saintyves, B., Jules, T., Salez, T., Schönecker, C., Mahadevan, L., Stone, H.A.: Rotation of an immersed cylinder sliding near a thin elastic coating. Phys. Rev. Fluids 2, 074102 (2017)

    Article  Google Scholar 

  71. Kim, S., Karrila, S.J.: Microhydrodynamics: Principles and Selected Applications. Courier Corporation, North Chelmsford (2013)

    Google Scholar 

  72. Bickel, T.: Brownian motion near a liquid-like membrane. Eur. Phys. J. E 20, 379–385 (2006)

    Article  Google Scholar 

  73. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1995)

  74. Brenner, H., Happel, J.: Slow viscous flow past a sphere in a cylindrical tube. J. Fluid Mech. 4(02), 195–213 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  75. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, vol. 1. Dover, New York (1972)

    MATH  Google Scholar 

  76. Haberman, R.: Elementary Applied Partial Differential Equations, vol. 987. Prentice Hall, Englewood Cliffs, NJ (1983)

    MATH  Google Scholar 

  77. Rao, P.R., Zahalak, G.I., Sutera, S.P.: Large deformations of elastic cylindrical capsules in shear flows. J. Fluid Mech. 270, 73–90 (1994)

    Article  MATH  Google Scholar 

  78. Bächer, C., Schrack, L., Gekle, S.: Clustering of microscopic particles in constricted blood flow. Phys. Rev. Fluids 2, 013102 (2017)

    Article  Google Scholar 

  79. Bukman, D.J., Yao, J.H., Wortis, M.: Stability of cylindrical vesicles under axial tension. Phys. Rev. E 54(5), 5463 (1996)

    Article  Google Scholar 

  80. Luo, Z.Y., Wang, S.Q., He, L., Xu, F., Bai, B.F.: Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow. Soft Matter 9, 9651–9660 (2013)

    Article  Google Scholar 

  81. Zheng, G.H., Powell, R.L., Stroeve, P.: Torque and frictional force acting on a slowly rotating sphere arbitrarily positioned in a circular cylinder. Ind. Eng. Chem. Res. 31(4), 1190–1194 (1992)

    Article  Google Scholar 

  82. Wang, W., Parker, K.H.: The effect of deformable porous surface layers on the motion of a sphere in a narrow cylindrical tube. J. Fluid Mech. 283, 287–305 (1995)

    Article  MATH  Google Scholar 

  83. Linton, C.M.: Multipole methods for boundary-value problems involving a sphere in a tube. IMA J. Appl. Math. 55(2), 187–204 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  84. Crocker, J.C.: Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres. J. Chem. Phys. 106(7), 2837–2840 (1997)

    Article  Google Scholar 

  85. Dufresne, E.R., Squires, T.M., Brenner, M.P., Grier, D.G.: Hydrodynamic coupling of two Brownian spheres to a planar surface. Phys. Rev. Lett. 85(15), 3317 (2000)

    Article  Google Scholar 

  86. Felderhof, B.U.: Hydrodynamic interaction between two spheres. Phys. A 89(2), 373–384 (1977)

    Article  MathSciNet  Google Scholar 

  87. Bracewell, R.: The Fourier Transform and Its Applications. McGraw-Hill, New York City (1999)

    MATH  Google Scholar 

  88. Hahn, T.: Cuba—a library for multidimensional numerical integration. Comput. Phys. Commun. 168(2), 78–95 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  89. Hahn, T.: Concurrent cuba. Comput. Phys. Commun. 207, 341–349 (2016)

    Article  MATH  Google Scholar 

  90. Bickel, T.: Hindered mobility of a particle near a soft interface. Phys. Rev. E 75, 041403 (2007)

    Article  Google Scholar 

  91. Phan-Thien, N., Tullock, D.: Completed double layer boundary element method in elasticity. J. Mech. Phys. Solids 41(6), 1067–1086 (1993)

    Article  MATH  Google Scholar 

  92. Phan-Thien, N., Tullock, D.: Completed double layer boundary element method in elasticity and Stokes flow: distributed computing through pvm. Comput. Mech. 14(4), 370–383 (1994)

    MATH  Google Scholar 

  93. Kohr, M., Pop, I.I.: Viscous Incompressible Flow for Low Reynolds Numbers, vol. 16. Wit Pr/Comp. Mech, Ashurst (2004)

    MATH  Google Scholar 

  94. Zhao, H., Shaqfeh, E.S.G.: Shear-induced platelet margination in a microchannel. Phys. Rev. E 83, 061924 (2011)

    Article  Google Scholar 

  95. Zhao, H., Shaqfeh, E.S.G., Narsimhan, V.: Shear-induced particle migration and margination in a cellular suspension. Phys. Fluids 24(1), 011902 (2012)

    Article  Google Scholar 

  96. Pozrikidis, C.: Interfacial dynamics for Stokes flow. J. Comput. Phys. 169, 250 (2001)

    Article  MATH  Google Scholar 

  97. Guckenberger, A., Schraml, M.P., Chen, P.G., Leonetti, M., Gekle, S.: On the bending algorithms for soft objects in flows. Comput. Phys. Commun. 207, 1–23 (2016)

    Article  MATH  Google Scholar 

  98. Krüger, T., Varnik, F., Raabe, D.: Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Comput. Math. Appl. 61, 3485–3505 (2011)

  99. Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.: The Lattice Boltzmann Method: Principles and Practice. Springer, Berlin (2016)

    MATH  Google Scholar 

  100. Conn, A.R., Gould, N.I.M., Toint, PhL: Trust Region Methods, vol. 1. SIAM, New York (2000)

    Book  MATH  Google Scholar 

  101. Friese, M.E.J., Rubinsztein-Dunlop, H., Gold, J., Hagberg, P., Hanstorp, D.: Optically driven micromachine elements. Appl. Phys. Lett. 78(4), 547–549 (2001)

    Article  Google Scholar 

  102. Deserno, M.: Fluid lipid membranes: from differential geometry to curvature stresses. Chem. Phys. Lipids 185, 11–45 (2015)

    Article  Google Scholar 

  103. Green, A.E., Adkins, J.C.: Large Elastic Deformations and Non-linear Continuum Mechanics. Oxford University Press, Oxford (1960)

    MATH  Google Scholar 

  104. Zhu, L.: Simulation of Individual Cells in Flow. Ph.D. thesis (2014)

  105. Krüger, T.: Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells Under Shear. Springer, Berlin (2012)

    Book  Google Scholar 

  106. Zhu, L., Brandt, L.: The motion of a deforming capsule through a corner. J. Fluid Mech. 770, 374–397 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  107. Synge, J.L., Schild, A.: Tensor Calculus, vol. 5. Courier Corporation, North Chelmsford (1969)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Daddi-Moussa-Ider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daddi-Moussa-Ider, A., Lisicki, M. & Gekle, S. Slow rotation of a spherical particle inside an elastic tube. Acta Mech 229, 149–171 (2018). https://doi.org/10.1007/s00707-017-1965-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1965-6

Navigation