Skip to main content

Advertisement

Log in

Dynamic pull-in instability of a prestretched viscous dielectric elastomer under electric loading

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The dynamic response of a pre-stretched elastomer membrane under electric loading was analysed. Thereby, two cases of voltage application, constant voltage and an incrementally increased voltage were regarded. The equation of motion (EOM) was derived from the Euler–Lagrange equation and the Rayleigh dissipation function. This allowed to include the influence of prestretch into the evolution equation of the viscous stretch. The critical values of pull-in instability under dynamic assumptions were determined at the initial state by an analytical model derived from the classical approaches of stability theory regarding geometric instabilities by using an energy criterion and were used to validate the numerical solution of the EOM. The results showed that both inertia and viscous effects have a notable influence on the pull-in stability behavior. In particular, at applied electric fields below the critical electric field the viscous behavior can still induce failure, which occurs time delayed. A non-monotonic dependence of the failure stretch on the magnitude of the applied electric fields below the critical value could be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Destrade M., Saccomandi, D.: Finite amplitude elastic waves propagating in compressible solids. Phys. Rev. E. (2005) doi:10.1103/PhysRevE.72.016620

  2. McCoul, D.J.: Dielectric Elastomers for Fluidic and Biomedical Applications. Ph.D. Thesis, University of California, Los Angeles (2015)

  3. Galich, P., Rudykh, S.: Manipulating pressure and shear waves in dielectric elastomers via external electric stimuli. Int. J. Solid Struct. (2016). doi:10.1016/j.ijsolstr.2016.04.032

    Google Scholar 

  4. Roy Kornbluh, G.B., Andeen, J.E.: Artificial muscle: the next generation of robotic actuators, vol. MS91-331. SME: Presented at the 4th World Conference of Robotics Research, Pittsburgh (1991)

  5. Pelrine, R., Kornbluh, R., Joseph, J., Chiba, S: Electrostriction of polymer films for microactuators. In: Tenth Annual International Workshop on Micro Electro Mechanical Systems (1997). doi:10.1109/MEMSYS.1997.581811

  6. Pelrine, R., Kornbluh, R., Joseph, J., Heydt, R., Pei, Q., Chiba, S.: High-field deformation of elastomeric dielectrics for actuators. Mater. Sci. Eng. C 11, 89 (2000)

    Article  Google Scholar 

  7. Maugin, G.A.: Nonlinear Electromechanical Couplings. Wiley, New York (1992)

    Google Scholar 

  8. Dorfmann, A.L., Ogden, R.W.: Nonlinear electroelasticity. Acta Mech. 174, 167 (2005). doi:10.1007/s00707-004-0202-2

    Article  MATH  Google Scholar 

  9. McMeeking, R.M., Landis, C.M.: Electrostatic forces and stored energy for deformable dielectric materials. J. Appl. Mech. 72, 581 (2005). doi:10.1115/1.1940661

    Article  MATH  Google Scholar 

  10. Dorfmann, A.L., Ogden, R.W.: Nonlinear electroelastic deformations. J. Elast. 82, 99 (2006). doi:10.1007/s10659-005-9028-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Plante, J.-S., Dubowsky, S.: Large-scale failure modes of dielectric elastomer actuators. Int. J. Solids Struct. 43, 7727 (2006). doi:10.1016/j.ijsolstr.2006.03.026

    Article  MATH  Google Scholar 

  12. Fox, J.W., Goulbourne, N.C.: On the dynamic electromechanical loading of dielectric elastomer membranes. J. Mech. Phys. Solids 56, 2669 (2008). doi:10.1016/j.jmps.2008.03.007

    Article  Google Scholar 

  13. Gonçalves, P.B., Pamplona, D., Teixeira, P.B.C., Jerusalmi, R.L.C., Cestari, I.A., Leirner, A.A.: Dynamic non-linear behavior and stability of a ventricular assist device. Int. J. Solids Struct. 40, 5017 (2003). doi:10.1016/S0020-7683(03)00252-X

    Article  Google Scholar 

  14. Godaba, H., Zhang, Z., Gupta, U., Foo, C.C., Zhu, J.: Dynamic pattern of wrinkles in a dielectric elastomer. Soft Matter (2017). doi:10.1039/c7sm00198c

    Google Scholar 

  15. Zhao, X., Suo, Z.: Method to analyze electromechanical stability of dielectric elastomers. Appl. Phys. Lett. (2007). doi:10.1063/1.2768641

    Google Scholar 

  16. Zhao, X., Koh, S., Suo, Z.: Nonequilibrium thermodynamics of dielectric elastomers. Int. J. Appl. Mech. 3, 203 (2011). doi:10.1142/S1758825111000944

    Article  Google Scholar 

  17. Norris, A.N.: Comment on method to analyze electromechanical stability of dielectric elastomers. Appl. Phys. Lett. (2008). doi:10.1063/1.2833688

    Google Scholar 

  18. Leng, J., Liu, L., Liu, Y., Yu, K., Sun, S.: Electromechanical stability of dielectric elastomer. Appl. Phys. Lett. (2009). doi:10.1063/1.3138153

    MATH  Google Scholar 

  19. Díaz-Calleja, R., Riande, E., Sanchis, M.J.: On electromechanical stability of dielectric elastomers. Appl. Phys. Lett. (2008). doi:10.1063/1.2972124

    Google Scholar 

  20. Xu, B., Mueller, R., Klassen, M., Gross, D.: On electromechanical stability analysis of dielectric elastomer actuators. Appl. Phys. Lett. (2010). doi:10.1063/1.3504702

    Google Scholar 

  21. Zhu, J., Cai, S., Suo, Z.: Resonant behavior of a membrane of a dielectric elastomer. Int. J. Solid Struct. (2010). doi:10.1016/j.ijsolstr.2010.08.008

    MATH  Google Scholar 

  22. Rudykh, S., Bhattacharya, K., de Botton, G.: Snap-through actuation of thick-wall electroactive balloons. Int. J. Nonlinear Mech. (2012). doi:10.1016/j.ijnonlinmec.2011.05.006

    Google Scholar 

  23. Li, T., Keplinger, C., Baumgartner, R., Bauer, S., Yang, W., Suo, Z.: Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. J. Mech. Phys. Solids (2013). doi:10.1016/j.jmps.2012.09.006

    Google Scholar 

  24. De Tommasi, D., Puglisi, G., Saccomandi, G., Zurlo, G.: Pull-in and wrinkling instabilities of electroactive dielectric actuators. J. Phys. D Appl. Phys. (2010). doi:10.1088/0022-3727/43/32/325501

    Google Scholar 

  25. Suo, Z., Zhao, X., Greene, W.H.: A nonlinear field theory of deformable dielectrics. J. Mech. Phys. Solids 43, 467–486 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dorfmann, A.L., Ogden, R.W.: Nonlinear electroelastostatics: incremental equations and stability. Int. J. Eng. Sci. (2008). doi:10.1016/j.ijengsci.2008.06.005

    MATH  Google Scholar 

  27. Dorfmann, A.L., Ogden, R.W.: Instabilities of an electroelastic plate. Int. J. Eng. Sci. (2014). doi:10.1016/j.ijengsci.2013.12.007

    MathSciNet  MATH  Google Scholar 

  28. Rudykh, S., Bhattacharya, G., de Botton, K.: Stability of anisotropic electroactive polymers with application to layered media. ZAMP (2011). doi:10.1007/s00033-011-0136-1

    Google Scholar 

  29. Rudykh, S., Bhattacharya, G., de Botton, K.: Multiscale instabilities in soft heterogeneous dielectric elastomers. Proc. R. Soc. A (2013). doi:10.1098/rspa.2013.0618

    MATH  Google Scholar 

  30. Hoff, N.J.: Buckling and stability. J. R. Aeronaut. Soc. 58, 1–51 (1954)

    Article  Google Scholar 

  31. Hoff, N.J.: Creep buckling. Aeronaut. Quart. 7, 1–51 (1956)

    Google Scholar 

  32. Rabotnov, G.N., Shesterikov, S.A.: Creep stability of columns and plates. J. Mech. Phys. Solids 6, 27–34 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  33. Minahen, T.M., Knauss, W.G.: Creep buckling of viscoelastic structures. Int. J. Solid Struct. 30, 1 (1993). doi:10.1016/0020-7683(93)90004-Q

    Article  Google Scholar 

  34. Ziegler, H.: Die Stabilittskriterien der Elastomechanik. Ing. Arch. 20, 49–56 (1952)

  35. Hoff, N.J.: Dynamic stability of structures. Technical report, Aeronautics and Astronautics Stanford University (1965)

  36. Xu, B., Mueller, R., Theis, A., Klassen, M., Gross, D.: Dynamic analysis of dielectric elastomer actuators. Appl. Phys. Lett. 100, 112903–1 (2012). doi:10.1063/1.3694267

    Article  Google Scholar 

  37. Zhu, J.: Instability in nonlinear oscillation of dielectric elastomers. J. Appl. Mech. 82, 061001 (2015). doi:10.1115/1.4030075

    Article  Google Scholar 

  38. Joglekar, M.M.: An energy-based approach to extract the dynamic instability parameters of dielectric elastomer actuators. J. Appl. Mech. (2014). doi:10.1115/1.4027925

    Google Scholar 

  39. Joglekar, M.M.: Dynamic-instability parameters of dielectric elastomer actuators with equal biaxial prestress. AIAA J. (2015). doi:10.2514/1.J054062

    Google Scholar 

  40. Wissler, M., Mazza, E.: Modeling and simulation of dielectric elastomer actuators. Smart Mater. Struct. 14, 1396 (2005). doi:10.1088/0964-1726/14/6/032

    Article  Google Scholar 

  41. Büschel, A., Klinkel, S., Wagner, W.: Dielectric elastomers numerical modeling of nonlinear visco-electroelasticity. Int. J. Numer. Methods Eng. 93, 1 (2013). doi:10.1002/nme.4409

    Article  MathSciNet  MATH  Google Scholar 

  42. Ask, A., Menzel, A., Ristinmaa, M.: Phenomenological modeling of viscous electrostrictive polymers. Int. J. Non Linear Mech. (2011). doi:10.1016/j.ijnonlinmec.2011.03.020

    Google Scholar 

  43. Vogel, F., Gktepe, S., Steimann, P., Kuhl, E.: Modeling and simulation of viscous electro-active polymers. Eur. J. Mech. A Solids 48, 112 (2014). doi:10.1016/j.euromechsol.2014.02.001

    Article  MathSciNet  Google Scholar 

  44. Khan, K.A., Wafai, H., El Sayed, T.: A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer. Comput. Mech. 52, 345 (2013). doi:10.1007/s00466-012-0815-6

    Article  MathSciNet  MATH  Google Scholar 

  45. Park, H.S., Nguyen, T.D.: Viscoelastic effects on electromechanical instabilities in dielectric elastomers. Soft Matter 9, 1031 (2013). doi:10.1039/c2sm27375f

    Article  Google Scholar 

  46. Ask, A., Menzel, A., Ristinmaaa, M.: Modelling of viscoelastic dielectric elastomers with deformation dependent electric properties. Proc. IUTAM (2015). doi:10.1016/j.piutam.2014.12.015

    Google Scholar 

  47. Park, H.S., Suo, Z., Zhou, J., Klein, P.: A dynamic finite element method for inhomogeneous deformation and electromechanical instability of dielectric elastomer transducers. Int. J. Solids Struct. 49, 2187 (2012). doi:10.1016/j.ijsolstr.2012.04.031

    Article  Google Scholar 

  48. Hong, W.: Modeling viscoelastic dielectrics. J. Mech. Phys. Solids 59, 637–650 (2011). doi:10.1016/j.jmps.2010.12.003

    Article  MathSciNet  MATH  Google Scholar 

  49. Sheng, J., Chen, H., Liu, L., Zhang, J., Wang, Y., Jia, S.: Dynamic electromechanical performance of viscoelastic dielectric elastomers. Appl. Phys. Lett. 114, 134101 (2013). doi:10.1063/1.4823861

    Google Scholar 

  50. Zhang, J., Tang, L., Li, Y., Wang, B., Chen, H.: Modeling of the dynamic characteristic of viscoelastic dielectric elastomer actuators subject to different conditions of mechanical load. J. Appl. Phys. 117, 084902 (2015). doi:10.1063/1.4913384

    Article  Google Scholar 

  51. Zhang, J., Chen, H., Sheng, J., Liu, L., Wang, Y., Jia, S.: Dynamic performance of dissipative dielectric elastomers under alternating mechanical load. Appl. Phys. A 116, 59 (2014). doi:10.1007/s00339-013-8092-6

    Article  Google Scholar 

  52. Foo, C.C., Cai, S., Koh, S.J.A., Bauer, S., Suo, Z.: Model of dissipative dielectric elastomers. J. Appl. Phys. 111, 1 (2012). doi:10.1063/1.3680878

    Google Scholar 

  53. Bonet, J.: Large strain viscoelastic constitutive models. Int. J. Solids Struct. 38, 2953 (2000). doi:10.1016/S0020-7683(00)00215-8

    Article  MATH  Google Scholar 

  54. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, Berlin (1998)

    MATH  Google Scholar 

  55. Anderson, I.A., Gisby, T.A., McKay, T.G., O’Brien, B.M., Calius, E.P.: Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. (2012). doi:10.1063/1.4740023

    Google Scholar 

  56. Foo, C.C., Koh, S.J.A., Keplinger, C., Kaltseis, R., Bauer, S.: Performance of dissipative dielectric elastomer generators. J. Appl. Phys. 111, 094107 (2012b). doi:10.1063/1.4714557

    Article  Google Scholar 

  57. Wang, S., Decker, M., Henann, D.L., Chester, S.A.: Modeling of dielectric viscoelastomers with application to electromechanical instabilities. J. Mech. Phys. Solids 95, 213–229 (2016). doi:10.1016/j.jmps.2016.05.033

    Article  MathSciNet  Google Scholar 

  58. Guo, J., Xiao, R., Park, H.S., Nguyen, T.D.: The temperature-dependent viscoelastic behavior of dielectric elastomers. J. Appl. Mech. 82, 091009 (2015). doi:10.1115/1.4030850

    Article  Google Scholar 

  59. Keplinger, C., Kaltenbrunner, M., Arnold, N., Bauer, S.: Capacitive extensometry for transient strain analysis of dielectric elastomer actuators. Appl. Phys. Lett. (2008). doi:10.1063/1.2929383

    Google Scholar 

  60. Hadamard, J.: Leçons sur la propagation des ondes et les équations de l’hydrodynamique. Hermann, Paris (1903)

    MATH  Google Scholar 

  61. Truesdell, C., Toupin, R.A.: The classical field theories. In: Flügge, S. (ed.) Principles of classical mechanics and field theory, vol. 2/3/1, pp. 226–858, Springer, Berlin (1960)

  62. Schreyer, H.L., Neilsen, M.K.: Analytical and numerical tests for loss of material stability. Int. J. Numer. Methods Eng. 39, 1721–1736 (1996). doi:10.1002/(SICI)1097-0207(19960530)39:10<1721::AID-NME924>3.0.CO;2-X

    Article  MathSciNet  MATH  Google Scholar 

  63. Kofod, G., Kornbluh, R., Pelrine, R., Sommer-Larson, P.: Actuation response of polyacrylate dielectric elastomers. Proc. SPIE (2001). doi:10.1117/12.432638

    Google Scholar 

  64. Bozlar, M., Punckt, C., Korkut, S., Zhu, J., Foo, C.C., Suo, Z., Aksay, I.A.: Dielectric elastomer actuators with elastomeric electrodes. Appl. Phys. Lett. 101, 091907 (2012). doi:10.1063/1.4748114

    Article  Google Scholar 

  65. Wissler, M., Mazza, E.: Modeling of a pre-strained circular actuator made of dielectric elastomers. Sensor Actuat. A Phys. 120, 184–192 (2004). doi:10.1016/j.sna.2004.11.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG), who enables this work by supporting the Project XU 121/5-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Eder-Goy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eder-Goy, D., Zhao, Y. & Xu, BX. Dynamic pull-in instability of a prestretched viscous dielectric elastomer under electric loading. Acta Mech 228, 4293–4307 (2017). https://doi.org/10.1007/s00707-017-1930-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1930-4

Navigation