Skip to main content

Atomistic modeling of out-of-plane deformation of a propagating Griffith crack in graphene

Abstract

Linear elastic fracture mechanics concepts have been widely used to characterize the fracture of nanoscale materials. In these concepts, pre-existing cracks in two-dimensional problems are assumed to be planar during the crack propagation. However, a perfect planar configuration of atomically thin nanostructures is not achievable in many applications due to complex interatomic interactions at the atomic scale. Formation of ripples and wrinkles has been experimentally observed in freestanding two-dimensional materials such as graphene. In this study, we employ molecular dynamics simulations to investigate the influence of out-of-plane deformation of a propagating Griffith crack. A numerical nanoscale uniaxial tensile test of a graphene sheet with a central crack is conducted. Two main aspects of the study are considered. The first is devoted to examining the influence of the crack orientation and the out-of-plane deformation of the crack surfaces on the crack-tip stress field. The second is concerned with the influence of the out-of-plane deformation on the fracture resistance of graphene. The analysis of the crack-tip stress field reveals a remarkably high transverse compressive stress at the crack surfaces, which induces the out-of-plane deformation. Moreover, our results reveal that in the absence of the crack out-of-plane deformation, the fracture resistance of graphene approaches the value given by Griffith’s criterion at a relatively smaller crack length as compared to the case involving out-of-plane deformation.

This is a preview of subscription content, access via your institution.

References

  1. Chen, C.Y., Lee, S., Deshpande, V.V., Lee, G.H., Lekas, M., Shepard, K., Hone, J.: Graphene mechanical oscillators with tunable frequency. Nat. Nanotechnol. 8, 923–927 (2013). doi:10.1038/nnano.2013.232

    Article  Google Scholar 

  2. Chen, C., Rosenblatt, S., Bolotin, K.I., Kalb, W., Kim, P., Kymissis, I., Stormer, H.L., Heinz, T.F., Hone, J.: Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4, 861–867 (2009). doi:10.1038/nnano.2009.267

    Article  Google Scholar 

  3. Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007). doi:10.1126/science.1136836

    Article  Google Scholar 

  4. Novoselov, K.S., Falko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490, 192–200 (2012)

    Article  Google Scholar 

  5. Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.Y., Grill, A., Avouris, P.: 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662–662 (2010). doi:10.1126/science.1184289

    Article  Google Scholar 

  6. Kundalwal, S.I., Meguid, S.A., Weng, G.J.: Strain gradient polarization in graphene. Carbon 117, 462–472 (2017). doi:10.1016/j.carbon.2017.03.013

    Article  Google Scholar 

  7. Banhart, F., Kotakoski, J., Krasheninnikov, A.V.: Structural Defects in Graphene. ACS Nano 5, 26–41 (2011). doi:10.1021/nn102598m

    Article  Google Scholar 

  8. Cançado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O., Lombardo, A., Kulmala, T.S., Ferrari, A.C.: Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011). doi:10.1021/nl201432g

    Article  Google Scholar 

  9. Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K.S., Casiraghi, C.: Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925–3930 (2012). doi:10.1021/nl300901a

    Article  Google Scholar 

  10. Annett, J., Cross, G.L.W.: Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate. Nature 535, 271–275 (2016). doi:10.1038/nature18304

    Article  Google Scholar 

  11. Jung, G., Qin, Z., Buehler, M.J.: Molecular mechanics of polycrystalline graphene with enhanced fracture toughness. Extreme Mech. Lett. 2, 52–59 (2015). doi:10.1016/j.eml.2015.01.007

    Article  Google Scholar 

  12. Zhang, T., Li, X., Gao, H.: Designing graphene structures with controlled distributions of topological defects: a case study of toughness enhancement in graphene ruga. Extreme Mech. Lett. 1, 3–8 (2014). doi:10.1016/j.eml.2014.12.007

    Article  Google Scholar 

  13. Meng, F., Chen, C., Song, J.: Dislocation shielding of a nanocrack in graphene: atomistic simulations and continuum modeling. J. Phys. Chem. Lett. 6, 4038–4042 (2015). doi:10.1021/acs.jpclett.5b01815

    Article  Google Scholar 

  14. Meng, F., Chen, C., Song, J.: Lattice trapping and crack decohesion in graphene. Carbon 116, 33–39 (2017). doi:10.1016/j.carbon.2017.01.091

    Article  Google Scholar 

  15. Zhang, T., Li, X., Gao, H.: Fracture of graphene: a review. Int. J. Fract. 1–31 (2015). doi:10.1007/s10704-015-0039-9

  16. Sandoz-Rosado, E., Beaudet, T.D., Balu, R., Wetzel, E.D.: Designing molecular structure to achieve ductile fracture behavior in a stiff and strong 2D polymer, "graphylene". Nanoscale 8, 10947–10955 (2016). doi:10.1039/C5NR07742G

    Article  Google Scholar 

  17. Dewapriya, M.A.N., Rajapakse, R.K.N.D.: Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects. J. Appl. Mech. 81, 081010 (2014). doi:10.1115/1.4027681

    Article  Google Scholar 

  18. Dewapriya, M.A.N., Rajapakse, R.K.N.D., Nigam, N.: Influence of hydrogen functionalization on the fracture strength of graphene and the interfacial properties of graphene-polymer nanocomposite. Carbon 1, 6991–7000 (2015). doi:10.1103/PhysRevB.37.6991

    Google Scholar 

  19. Rajasekaran, G., Parashar, A.: Enhancement of fracture toughness of graphene via crack bridging with stone-thrower-wales defects. Diam. Relat. Mater. 74, 90–99 (2017). doi:10.1016/j.diamond.2017.02.015

    Article  Google Scholar 

  20. Deng, S., Berry, V.: Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19, 197–212 (2016). doi:10.1016/j.mattod.2015.10.002

    Article  Google Scholar 

  21. Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007). doi:10.1038/nature05545

    Article  Google Scholar 

  22. Blees, M.K., Barnard, A.W., Rose, P.A., Roberts, S.P., McGill, K.L., Huang, P.Y., Ruyack, A.R., Kevek, J.W., Kobrin, B., Muller, D.A., McEuen, P.L.: Graphene kirigami. Nature 524, 204–207 (2015). doi:10.1038/nature14588

    Article  Google Scholar 

  23. Song, Z., Artyukhov, V.I., Wu, J., Yakobson, B.I., Xu, Z.: Defect-detriment to graphene strength is concealed by local probe: the topological and geometrical effects. ACS Nano 9, 401–408 (2015). doi:10.1021/nn505510r

    Article  Google Scholar 

  24. Zhang, T., Li, X., Gao, H.: Defects controlled wrinkling and topological design in graphene. J. Mech. Phys. Solids 67, 2–13 (2014). doi:10.1016/j.jmps.2014.02.005

    Article  MathSciNet  Google Scholar 

  25. Yin, H., Qi, H.J., Fan, F., Zhu, T., Wang, B., Wei, Y.: Griffith criterion for brittle fracture in graphene. Nano Lett. 15, 1918–1924 (2015). doi:10.1021/nl5047686

    Article  Google Scholar 

  26. Dewapriya, M.A.N., Rajapakse, R.K.N.D., Phani, A.S.: Atomistic and continuum modelling of temperature-dependent fracture of graphene. Int. J. Fract. 187, 199–212 (2014). doi:10.1007/s10704-014-9931-y

    Article  Google Scholar 

  27. Zhang, T., Li, X., Kadkhodaei, S., Gao, H.: Flaw insensitive fracture in nanocrystalline graphene. Nano Lett. 12, 4605–4610 (2012). doi:10.1021/nl301908b

    Article  Google Scholar 

  28. Song, Z., Ni, Y., Xu, Z.: Geometrical distortion leads to Griffith strength reduction in graphene membranes. Extreme Mech. Lett. (2017). doi:10.1016/j.eml.2017.01.005

    Google Scholar 

  29. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). doi:10.1006/jcph.1995.1039

    Article  MATH  Google Scholar 

  30. Mattoni, A., Colombo, L., Cleri, F.: Atomic scale origin of crack resistance in brittle fracture. Phys. Rev. Lett. 95, 115501 (2005). doi:10.1103/PhysRevLett.95.115501

    Article  Google Scholar 

  31. Cleri, F., Phillpot, S.R., Wolf, D., Yip, S.: Atomistic simulations of materials fracture and the link between atomic and continuum length scales. J. Am. Ceram. Soc. 81, 501–516 (1998). doi:10.1111/j.1151-2916.1998.tb02368.x

    Article  Google Scholar 

  32. Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000). doi:10.1063/1.481208

    Article  Google Scholar 

  33. Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B. 42, 9458–9471 (1990). doi:10.1103/PhysRevB.42.9458

    Article  Google Scholar 

  34. Dewapriya, M.A.N., Rajapakse, R.K.N.D.: Development of a homogenous nonlinear spring model characterizing the interfacial adhesion properties of graphene with surface defects. Compos. Part B Eng. 98, 339–349 (2016). doi:10.1016/j.compositesb.2016.04.052

    Article  Google Scholar 

  35. Shenderova, O.A., Brenner, D.W., Omeltchenko, A., Su, X., Yang, L.H.: Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B. 61, 3877–3888 (2000). doi:10.1103/PhysRevB.61.3877

    Article  Google Scholar 

  36. Dilrukshi, K.G.S., Dewapriya, M.A.N., Puswewala, U.G.A.: Size dependency and potential field influence on deriving mechanical properties of carbon nanotubes using molecular dynamics. Theor. Appl. Mech. Lett. 5, 167–172 (2015). doi:10.1016/j.taml.2015.05.005

    Article  Google Scholar 

  37. Jhon, Y.I., Jhon, Y.M., Yeom, G.Y., Jhon, M.S.: Orientation dependence of the fracture behavior of graphene. Carbon 66, 619–628 (2014). doi:10.1016/j.carbon.2013.09.051

    Article  Google Scholar 

  38. Zhang, B., Mei, L., Xiao, H.: Nanofracture in graphene under complex mechanical stresses. Appl. Phys. Lett. 101, 121915 (2012). doi:10.1063/1.4754115

    Article  Google Scholar 

  39. Humphrey, W., Dalke, A., Schulten, K.: VMD—visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  Google Scholar 

  40. Tsai, D.H.: The virial theorem and stress calculation in molecular dynamics. J. Chem. Phys. 70, 1375–1382 (1979). doi:10.1063/1.437577

    Article  Google Scholar 

  41. Ohta, T.: Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006). doi:10.1126/science.1130681

    Article  Google Scholar 

  42. Alian, A.R., Dewapriya, M.A.N., Meguid, S.A.: Molecular dynamics study of the reinforcement effect of graphene in multilayered polymer nanocomposites. Mater. Des. 124, 47–57 (2017). doi:10.1016/j.matdes.2017.03.052

    Article  Google Scholar 

  43. Dewapriya, M.A.N., Phani, A.S., Rajapakse, R.K.N.D.: Influence of temperature and free edges on the mechanical properties of graphene. Model. Simul. Mater. Sci. Eng. 21, 065017 (2013)

    Article  Google Scholar 

  44. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). doi:10.1126/science.1157996

    Article  Google Scholar 

  45. Liu, F., Ming, P., Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B. 76, 064120 (2007). doi:10.1103/PhysRevB.76.064120

    Article  Google Scholar 

  46. Wei, Y., Wu, J., Yin, H., Shi, X., Yang, R., Dresselhaus, M.: The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nat. Mater. 11, 759–763 (2012)

    Article  Google Scholar 

  47. Zhang, P., Ma, L., Fan, F., Zeng, Z., Peng, C., Loya, P.E., Liu, Z., Gong, Y., Zhang, J., Zhang, X. et al.: Fracture toughness of graphene. Nat. Commun. 5 (2014). doi:10.1038/ncomms4782

  48. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character. 221, 163–198 (1921). doi:10.1098/rsta.1921.0006

    Article  Google Scholar 

  49. Lu, Q., Huang, R.: Excess energy and deformation along free edges of graphene nanoribbons. Phys. Rev. B. 81, 155410 (2010). doi:10.1103/PhysRevB.81.155410

    Article  Google Scholar 

  50. Meguid, S.A.: Engineering fracture mechanics. Elsevier Applied Science; Sole Distributor in the USA and Canada, Elsevier Science Pub, London (1989)

Download references

Acknowledgements

The authors wish to thank NSERC and the Discovery Accelerator Supplement for their kind support of this research. Computing resources were provided by WestGrid and Compute/Calcul Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Meguid.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dewapriya, M.A.N., Meguid, S.A. Atomistic modeling of out-of-plane deformation of a propagating Griffith crack in graphene. Acta Mech 228, 3063–3075 (2017). https://doi.org/10.1007/s00707-017-1883-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1883-7