Abstract
Linear elastic fracture mechanics concepts have been widely used to characterize the fracture of nanoscale materials. In these concepts, pre-existing cracks in two-dimensional problems are assumed to be planar during the crack propagation. However, a perfect planar configuration of atomically thin nanostructures is not achievable in many applications due to complex interatomic interactions at the atomic scale. Formation of ripples and wrinkles has been experimentally observed in freestanding two-dimensional materials such as graphene. In this study, we employ molecular dynamics simulations to investigate the influence of out-of-plane deformation of a propagating Griffith crack. A numerical nanoscale uniaxial tensile test of a graphene sheet with a central crack is conducted. Two main aspects of the study are considered. The first is devoted to examining the influence of the crack orientation and the out-of-plane deformation of the crack surfaces on the crack-tip stress field. The second is concerned with the influence of the out-of-plane deformation on the fracture resistance of graphene. The analysis of the crack-tip stress field reveals a remarkably high transverse compressive stress at the crack surfaces, which induces the out-of-plane deformation. Moreover, our results reveal that in the absence of the crack out-of-plane deformation, the fracture resistance of graphene approaches the value given by Griffith’s criterion at a relatively smaller crack length as compared to the case involving out-of-plane deformation.
This is a preview of subscription content, access via your institution.
References
Chen, C.Y., Lee, S., Deshpande, V.V., Lee, G.H., Lekas, M., Shepard, K., Hone, J.: Graphene mechanical oscillators with tunable frequency. Nat. Nanotechnol. 8, 923–927 (2013). doi:10.1038/nnano.2013.232
Chen, C., Rosenblatt, S., Bolotin, K.I., Kalb, W., Kim, P., Kymissis, I., Stormer, H.L., Heinz, T.F., Hone, J.: Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4, 861–867 (2009). doi:10.1038/nnano.2009.267
Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007). doi:10.1126/science.1136836
Novoselov, K.S., Falko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490, 192–200 (2012)
Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.Y., Grill, A., Avouris, P.: 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662–662 (2010). doi:10.1126/science.1184289
Kundalwal, S.I., Meguid, S.A., Weng, G.J.: Strain gradient polarization in graphene. Carbon 117, 462–472 (2017). doi:10.1016/j.carbon.2017.03.013
Banhart, F., Kotakoski, J., Krasheninnikov, A.V.: Structural Defects in Graphene. ACS Nano 5, 26–41 (2011). doi:10.1021/nn102598m
Cançado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O., Lombardo, A., Kulmala, T.S., Ferrari, A.C.: Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011). doi:10.1021/nl201432g
Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K.S., Casiraghi, C.: Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925–3930 (2012). doi:10.1021/nl300901a
Annett, J., Cross, G.L.W.: Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate. Nature 535, 271–275 (2016). doi:10.1038/nature18304
Jung, G., Qin, Z., Buehler, M.J.: Molecular mechanics of polycrystalline graphene with enhanced fracture toughness. Extreme Mech. Lett. 2, 52–59 (2015). doi:10.1016/j.eml.2015.01.007
Zhang, T., Li, X., Gao, H.: Designing graphene structures with controlled distributions of topological defects: a case study of toughness enhancement in graphene ruga. Extreme Mech. Lett. 1, 3–8 (2014). doi:10.1016/j.eml.2014.12.007
Meng, F., Chen, C., Song, J.: Dislocation shielding of a nanocrack in graphene: atomistic simulations and continuum modeling. J. Phys. Chem. Lett. 6, 4038–4042 (2015). doi:10.1021/acs.jpclett.5b01815
Meng, F., Chen, C., Song, J.: Lattice trapping and crack decohesion in graphene. Carbon 116, 33–39 (2017). doi:10.1016/j.carbon.2017.01.091
Zhang, T., Li, X., Gao, H.: Fracture of graphene: a review. Int. J. Fract. 1–31 (2015). doi:10.1007/s10704-015-0039-9
Sandoz-Rosado, E., Beaudet, T.D., Balu, R., Wetzel, E.D.: Designing molecular structure to achieve ductile fracture behavior in a stiff and strong 2D polymer, "graphylene". Nanoscale 8, 10947–10955 (2016). doi:10.1039/C5NR07742G
Dewapriya, M.A.N., Rajapakse, R.K.N.D.: Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects. J. Appl. Mech. 81, 081010 (2014). doi:10.1115/1.4027681
Dewapriya, M.A.N., Rajapakse, R.K.N.D., Nigam, N.: Influence of hydrogen functionalization on the fracture strength of graphene and the interfacial properties of graphene-polymer nanocomposite. Carbon 1, 6991–7000 (2015). doi:10.1103/PhysRevB.37.6991
Rajasekaran, G., Parashar, A.: Enhancement of fracture toughness of graphene via crack bridging with stone-thrower-wales defects. Diam. Relat. Mater. 74, 90–99 (2017). doi:10.1016/j.diamond.2017.02.015
Deng, S., Berry, V.: Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19, 197–212 (2016). doi:10.1016/j.mattod.2015.10.002
Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007). doi:10.1038/nature05545
Blees, M.K., Barnard, A.W., Rose, P.A., Roberts, S.P., McGill, K.L., Huang, P.Y., Ruyack, A.R., Kevek, J.W., Kobrin, B., Muller, D.A., McEuen, P.L.: Graphene kirigami. Nature 524, 204–207 (2015). doi:10.1038/nature14588
Song, Z., Artyukhov, V.I., Wu, J., Yakobson, B.I., Xu, Z.: Defect-detriment to graphene strength is concealed by local probe: the topological and geometrical effects. ACS Nano 9, 401–408 (2015). doi:10.1021/nn505510r
Zhang, T., Li, X., Gao, H.: Defects controlled wrinkling and topological design in graphene. J. Mech. Phys. Solids 67, 2–13 (2014). doi:10.1016/j.jmps.2014.02.005
Yin, H., Qi, H.J., Fan, F., Zhu, T., Wang, B., Wei, Y.: Griffith criterion for brittle fracture in graphene. Nano Lett. 15, 1918–1924 (2015). doi:10.1021/nl5047686
Dewapriya, M.A.N., Rajapakse, R.K.N.D., Phani, A.S.: Atomistic and continuum modelling of temperature-dependent fracture of graphene. Int. J. Fract. 187, 199–212 (2014). doi:10.1007/s10704-014-9931-y
Zhang, T., Li, X., Kadkhodaei, S., Gao, H.: Flaw insensitive fracture in nanocrystalline graphene. Nano Lett. 12, 4605–4610 (2012). doi:10.1021/nl301908b
Song, Z., Ni, Y., Xu, Z.: Geometrical distortion leads to Griffith strength reduction in graphene membranes. Extreme Mech. Lett. (2017). doi:10.1016/j.eml.2017.01.005
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). doi:10.1006/jcph.1995.1039
Mattoni, A., Colombo, L., Cleri, F.: Atomic scale origin of crack resistance in brittle fracture. Phys. Rev. Lett. 95, 115501 (2005). doi:10.1103/PhysRevLett.95.115501
Cleri, F., Phillpot, S.R., Wolf, D., Yip, S.: Atomistic simulations of materials fracture and the link between atomic and continuum length scales. J. Am. Ceram. Soc. 81, 501–516 (1998). doi:10.1111/j.1151-2916.1998.tb02368.x
Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000). doi:10.1063/1.481208
Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B. 42, 9458–9471 (1990). doi:10.1103/PhysRevB.42.9458
Dewapriya, M.A.N., Rajapakse, R.K.N.D.: Development of a homogenous nonlinear spring model characterizing the interfacial adhesion properties of graphene with surface defects. Compos. Part B Eng. 98, 339–349 (2016). doi:10.1016/j.compositesb.2016.04.052
Shenderova, O.A., Brenner, D.W., Omeltchenko, A., Su, X., Yang, L.H.: Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B. 61, 3877–3888 (2000). doi:10.1103/PhysRevB.61.3877
Dilrukshi, K.G.S., Dewapriya, M.A.N., Puswewala, U.G.A.: Size dependency and potential field influence on deriving mechanical properties of carbon nanotubes using molecular dynamics. Theor. Appl. Mech. Lett. 5, 167–172 (2015). doi:10.1016/j.taml.2015.05.005
Jhon, Y.I., Jhon, Y.M., Yeom, G.Y., Jhon, M.S.: Orientation dependence of the fracture behavior of graphene. Carbon 66, 619–628 (2014). doi:10.1016/j.carbon.2013.09.051
Zhang, B., Mei, L., Xiao, H.: Nanofracture in graphene under complex mechanical stresses. Appl. Phys. Lett. 101, 121915 (2012). doi:10.1063/1.4754115
Humphrey, W., Dalke, A., Schulten, K.: VMD—visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)
Tsai, D.H.: The virial theorem and stress calculation in molecular dynamics. J. Chem. Phys. 70, 1375–1382 (1979). doi:10.1063/1.437577
Ohta, T.: Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006). doi:10.1126/science.1130681
Alian, A.R., Dewapriya, M.A.N., Meguid, S.A.: Molecular dynamics study of the reinforcement effect of graphene in multilayered polymer nanocomposites. Mater. Des. 124, 47–57 (2017). doi:10.1016/j.matdes.2017.03.052
Dewapriya, M.A.N., Phani, A.S., Rajapakse, R.K.N.D.: Influence of temperature and free edges on the mechanical properties of graphene. Model. Simul. Mater. Sci. Eng. 21, 065017 (2013)
Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). doi:10.1126/science.1157996
Liu, F., Ming, P., Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B. 76, 064120 (2007). doi:10.1103/PhysRevB.76.064120
Wei, Y., Wu, J., Yin, H., Shi, X., Yang, R., Dresselhaus, M.: The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nat. Mater. 11, 759–763 (2012)
Zhang, P., Ma, L., Fan, F., Zeng, Z., Peng, C., Loya, P.E., Liu, Z., Gong, Y., Zhang, J., Zhang, X. et al.: Fracture toughness of graphene. Nat. Commun. 5 (2014). doi:10.1038/ncomms4782
Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character. 221, 163–198 (1921). doi:10.1098/rsta.1921.0006
Lu, Q., Huang, R.: Excess energy and deformation along free edges of graphene nanoribbons. Phys. Rev. B. 81, 155410 (2010). doi:10.1103/PhysRevB.81.155410
Meguid, S.A.: Engineering fracture mechanics. Elsevier Applied Science; Sole Distributor in the USA and Canada, Elsevier Science Pub, London (1989)
Acknowledgements
The authors wish to thank NSERC and the Discovery Accelerator Supplement for their kind support of this research. Computing resources were provided by WestGrid and Compute/Calcul Canada.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dewapriya, M.A.N., Meguid, S.A. Atomistic modeling of out-of-plane deformation of a propagating Griffith crack in graphene. Acta Mech 228, 3063–3075 (2017). https://doi.org/10.1007/s00707-017-1883-7
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00707-017-1883-7