Skip to main content
Log in

Large-amplitude dynamics of a functionally graded microcantilever with an intermediate spring-support and a point-mass

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Numerical modelling and simulations are conducted on the large-amplitude dynamics of a functionally graded microcantilever with a tip-mass, additionally supported by an intermediate spring; the functionally graded microsystem is subject to a base excitation. Since one end of the microsystem is free to move, it undergoes large deformation; curvature-related nonlinearities play an important role. Taking into account this type of nonlinearity, using the Mori–Tanaka homogenisation scheme, as well as the modified couple stress theory, an energy technique is employed to derive the nonlinearly coupled equations for the longitudinal and transverse motions. An inextensibility assumption is applied for the functionally graded microcantilever, and hence, a nonlinear equation of motion for the transverse motion involving inertial (apart from stiffness) nonlinearity is obtained. For the functionally graded microsystem considered, effects of the length-scale parameter, the material gradient index, the tip-mass, and the stiffness of the spring-support on the nonlinear resonant responses are highlighted by means of a Houbolt’s finite difference scheme together with Newton–Raphson method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fernandes, R., Mousavi, S.M., El-Borgi, S.: Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory. Acta Mech. 227(9), 2657–2670 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lü, C.F., Lim, C.W., Chen, W.Q.: Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory. Int. J. Solids Struct. 46, 1176–1185 (2009)

    Article  MATH  Google Scholar 

  3. Huang, D.W.: Size-dependent response of ultra-thin films with surface effects. Int. J. Solids Struct. 45, 568–579 (2008)

    Article  MATH  Google Scholar 

  4. Witvrouw, A., Mehta, A.: The use of functionally graded poly-SiGe layers for MEMS applications. Mater. Sci. Forum 492, 255–260 (2005)

    Article  Google Scholar 

  5. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060 (2005)

    Article  Google Scholar 

  6. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  7. Ghayesh, M.H., Farokhi, H.: Coupled size-dependent behavior of shear deformable microplates. Acta Mech. 227, 757–775 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Şimşek, M., Aydın, M., Yurtcu, H.H., Reddy, J.N.: Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory. Acta Mech. 226, 3807–3822 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Darijani, H., Shahdadi, A.H.: A new shear deformation model with modified couple stress theory for microplates. Acta Mech. 226, 2773–2788 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fakhrabadi, M., Rastgoo, A., Ahmadian, M., Mashhadi, M.: Dynamic analysis of carbon nanotubes under electrostatic actuation using modified couple stress theory. Acta Mech. 225, 1523–1535 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Taati, E., Molaei Najafabadi, M., Basirat Tabrizi, H.: Size-dependent generalized thermoelasticity model for Timoshenko microbeams. Acta Mech. 225, 1823–1842 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ghayesh, M.H., Farokhi, H.: Coupled nonlinear dynamics of geometrically imperfect shear deformable extensible microbeams. ASME J. Comput. Nonlinear Dyn. 11, 041001–041001 (2016)

    Article  Google Scholar 

  13. Gholipour, A., Farokhi, H., Ghayesh, M.H.: In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn. 79, 1771–1785 (2015)

    Article  Google Scholar 

  14. Ansari, R., Shojaei, M.F., Gholami, R.: Size-dependent nonlinear mechanical behavior of third-order shear deformable functionally graded microbeams using the variational differential quadrature method. Compos. Struct. 136, 669–683 (2016)

    Article  Google Scholar 

  15. Roque, C.M.C., Fidalgo, D.S., Ferreira, A.J.M., Reddy, J.N.: A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method. Compos. Struct. 96, 532–537 (2013)

    Article  Google Scholar 

  16. Farokhi, H., Ghayesh, M., Amabili, M.: Nonlinear resonant behavior of microbeams over the buckled state. Appl. Phys. A 113, 297–307 (2013)

    Article  Google Scholar 

  17. Ghayesh, M.H., Amabili, M.: Coupled longitudinal-transverse behaviour of a geometrically imperfect microbeam. Compos. B Eng. 60, 371–377 (2014)

    Article  Google Scholar 

  18. Ghayesh, M.H., Farokhi, H., Gholipour, A., Hussain, S., Arjomandi, M.: Resonance responses of geometrically imperfect functionally graded extensible microbeams. ASME J. Comput. Nonlinear Dyn. 12, 051002-1 (2017)

    Google Scholar 

  19. Ghayesh, M.H., Farokhi, H.: Chaotic motion of a parametrically excited microbeam. Int. J. Eng. Sci. 96, 34–45 (2015)

    Article  MathSciNet  Google Scholar 

  20. Dehrouyeh-Semnani, A.M., Bahrami, A.: On size-dependent Timoshenko beam element based on modified couple stress theory. Int. J. Eng. Sci. 107, 134–148 (2016)

    Article  MathSciNet  Google Scholar 

  21. Li, X., Li, L., Hu, Y., Ding, Z., Deng, W.: Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos. Struct. 165, 250–265 (2017)

    Article  Google Scholar 

  22. Mirsalehi, M., Azhari, M., Amoushahi, H.: Buckling and free vibration of the FGM thin micro-plate based on the modified strain gradient theory and the spline finite strip method. Eur. J. Mech. A. Solids 61, 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  23. Ghayesh, M.H., Farokhi, H., Alici, G.: Internal energy transfer in dynamical behavior of slightly curved shear deformable microplates. ASME J. Comput. Nonlinear Dyn. 11, 041002–041002 (2016)

    Article  Google Scholar 

  24. Tajalli, S., Rahaeifard, M., Kahrobaiyan, M., Movahhedy, M., Akbari, J., Ahmadian, M.: Mechanical behavior analysis of size-dependent micro-scaled functionally graded Timoshenko beams by strain gradient elasticity theory. Compos. Struct. 102, 72–80 (2013)

    Article  Google Scholar 

  25. Akgöz, B., Civalek, Ö.: Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. Int. J. Eng. Sci. 85, 90–104 (2014)

    Article  Google Scholar 

  26. Şimşek, M., Reddy, J.: A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory. Compos. Struct. 101, 47–58 (2013)

    Article  Google Scholar 

  27. Ke, L.-L., Wang, Y.-S., Yang, J., Kitipornchai, S.: Nonlinear free vibration of size-dependent functionally graded microbeams. Int. J. Eng. Sci. 50, 256–267 (2012)

    Article  MathSciNet  Google Scholar 

  28. Aghazadeh, R., Cigeroglu, E., Dag, S.: Static and free vibration analyses of small-scale functionally graded beams possessing a variable length scale parameter using different beam theories. Eur. J. Mech. A Solids 46, 1–11 (2014)

    Article  MathSciNet  Google Scholar 

  29. Arbind, A., Reddy, J.: Nonlinear analysis of functionally graded microstructure-dependent beams. Compos. Struct. 98, 272–281 (2013)

    Article  Google Scholar 

  30. Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H., Rahaeifard, M.: On the size-dependent behavior of functionally graded micro-beams. Mater. Des. 31, 2324–2329 (2010)

    Article  Google Scholar 

  31. Akgöz, B., Civalek, Ö.: Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory. Compos. Struct. 98, 314–322 (2013)

    Article  Google Scholar 

  32. Shafiei, N., Kazemi, M., Ghadiri, M.: On size-dependent vibration of rotary axially functionally graded microbeam. Int. J. Eng. Sci. 101, 29–44 (2016)

    Article  Google Scholar 

  33. Ghayesh, M.H., Amabili, M.: Steady-state transverse response of an axially moving beam with time-dependent axial speed. Int. J. Non-Linear Mech. 49, 40–49 (2013)

    Article  MATH  Google Scholar 

  34. Ghayesh, M.H., Amabili, M., Farokhi, H.: Coupled global dynamics of an axially moving viscoelastic beam. Int. J. Non-Linear Mech. 51, 54–74 (2013)

    Article  MATH  Google Scholar 

  35. Ghayesh, M.H., Amabili, M.: Nonlinear dynamics of axially moving viscoelastic beams over the buckled state. Comput. Struct. 112–113, 406–421 (2012)

    Article  Google Scholar 

  36. Farokhi, H., Ghayesh, M.H., Hussain, S.: Large-amplitude dynamical behaviour of microcantilevers. Int. J. Eng. Sci. 106, 29–41 (2016)

    Article  Google Scholar 

  37. Dai, H.L., Wang, Y.K., Wang, L.: Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory. Int. J. Eng. Sci. 94, 103–112 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mergen H. Ghayesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghayesh, M.H., Farokhi, H. & Gholipour, A. Large-amplitude dynamics of a functionally graded microcantilever with an intermediate spring-support and a point-mass. Acta Mech 228, 4309–4323 (2017). https://doi.org/10.1007/s00707-017-1858-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1858-8

Navigation