Skip to main content
Log in

Predictions of elastic properties of reinforced polymers accounting for the agglomeration of fillers

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A micromechanics model for the prediction of elastic properties of reinforced polymers taking into account the agglomeration of fillers is developed. The influence of the shape of fillers on the results is discussed on the basis of a model developed earlier (Tandon and Weng in Compos. Sci. Technol. 27:111–132, 1986). The analysis is extended further for the consideration of possible agglomeration of fillers, and a micro-structure parameter \(\eta \) is accordingly introduced for its characterization. The values of the \(\eta \)-parameter are in the interval from zero to unity; higher value of \(\eta \) implies a greater degree of agglomeration of fillers. The applications of the model to some polymers reinforced with single-walled carbon nanotubes (SWNTs) are discussed; theoretical predictions are compared with experimental and numerical results available in the literature. It is concluded that the \(\eta \)-parameter increases with the volume fraction of fillers in current fabrication processes, and the agglomeration of fillers renders the reduction of the stiffness-enhancement capability of SWNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Christensen, R.M.: Mechanics of Composite Materials. Wiley, New York (1979)

    Google Scholar 

  2. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgia 21, 571–573 (1973)

    Article  Google Scholar 

  3. Taya, M., Chou, T.W.: On two kinds of ellipsoidal inhomogeneities in an infinite elastic body: an application to a hybrid composite. Int. J. Solids Struct. 17, 553–563 (1981)

    Article  MATH  Google Scholar 

  4. Taya, M., Mura, T.: On stiffness and strength of an aligned short fiber reinforced composite containing fiber-ed cracks under uniaxial applied stress. ASME J. Appl. Mech. 48, 361–367 (1981)

    Article  MATH  Google Scholar 

  5. Tandon, G.P., Weng, G.J.: Average stress in the matrix and effective moduli of randomly oriented composites. Compos. Sci. Technol. 27, 111–132 (1986)

    Article  Google Scholar 

  6. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  8. Weng, G.J.: Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int. J. Eng. Sci. 22, 845–856 (1984)

    Article  MATH  Google Scholar 

  9. Wu, T.T.: The effect of inclusion shape on the elastic moduli of a two-phase material. Int. J. Solids Struct. 2, 1–8 (1966)

    Article  Google Scholar 

  10. Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  MATH  Google Scholar 

  11. Chiang, C.R.: An extended Mori-Tanaka’s micromechanics model. In: 16th International Conference on Composite Materials, Kyoto, Japan (2007)

  12. Barai, P., Weng, G.J.: A theory of plasticity for carbon nanotube reinforced composites. Int. J. Plast 27, 539–559 (2011)

    Article  MATH  Google Scholar 

  13. Wang, Y., Shan, J.W., Weng, G.J.: Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. J. Appl. Phys. 118, 065101 1-10 (2015)

    Google Scholar 

  14. Song, Y.S., Youn, J.R.: Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43, 1378–1385 (2005)

    Article  Google Scholar 

  15. Lusti, H.R., Gusev, A.A.: Finite element predictions for the thermoelastic properties of nanotube reinforced polymers. Modell. Simul. Mater. Sci. Eng. 12, S107–S119 (2004)

    Article  Google Scholar 

  16. Selmi, A., Friebel, C., Doghri, I., Hassis, H.: Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: a comparative study of several micromechanical models. Compos. Sci. Technol. 67, 2071–2084 (2007)

    Article  Google Scholar 

  17. Zhang, X., Liu, T., Streekumar, T.V., Kumar, S., Hu, X., Smith, K.: Gel spinning of PVA/SWNT composite fiber. Polymer 45, 8801–8807 (2004)

    Article  Google Scholar 

  18. Felbeck, D.K., Atkins, A.G.: Strength and Fracture of Engineering Solids. Prentice-Hall, New Jersey (1984)

    Google Scholar 

  19. López Manchado, M.A., Valentini, L., Biagiotti, J., Kenny, J.M.: Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon 43, 1499–1505 (2005)

    Article  Google Scholar 

  20. Beran, M.: Statistical Continuum Theories. Wiley Interscience, New York (1968)

    MATH  Google Scholar 

  21. Kröner, E.: Statistical Continuum Mechanics. Courses and Lectures No92, International Centre for Mechanical Sciences, CISM, Udine, Springer, Wien-New York (1972)

  22. Milton, G.W.: Bounds on the elastic and transport properties of two-component composites. J. Mech. Phys. Solids 30, 177–191 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nomura, S., Chou, T.W.: Bounds for elastic moduli of multiphase short-fiber composites. J. Appl. Mech. 51, 540–545 (1984)

    Article  MATH  Google Scholar 

  24. Weng, G.J.: The theoretical connection between Mori-Tanaka-Walpole bounds. Int. J. Eng. Sci. 28, 1111–1120 (1990)

    Article  MATH  Google Scholar 

  25. Torquato, S.: Random heterogeneous media: microstructure and improved bounds on effective properties. Appl. Mech. Rev. 44, 37–76 (1991)

    Article  MathSciNet  Google Scholar 

  26. Chiang, C.R., Weng, G.J.: A new look at Hill’s arithmetic and geometric means for a two-phase, isotropic composite. Acta Mech. 156, 1–12 (2002)

    Article  MATH  Google Scholar 

  27. Chiang, C.R.: Three-point geometric parameter for the transverse cross section of a fibrous composite. Acta Mech. 227, 1919–1926 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ron Chiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, CR. Predictions of elastic properties of reinforced polymers accounting for the agglomeration of fillers. Acta Mech 228, 2933–2944 (2017). https://doi.org/10.1007/s00707-017-1856-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1856-x

Navigation