Skip to main content
Log in

Modeling and analysis of two electrified films flow traveling down between inclined permeable parallel substrates

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The purpose of this study is to establish the temporal stability of two bounded thin films flow of a viscous fluid inside a permeable inclined channel. Based on the long-wave theory, an integral boundary layer model for the film thickness, the volumetric flow rate, and the surface charge are derived. The driving force for the instability under an electric field is an electrostatic force exerted on the free charges accumulated at the interface. The linear stability analysis for the leaky dielectric model is performed, and a cubic dispersion relation is obtained by the normal mode technique using suitable boundary and interface conditions. The numerical calculations of the linear analysis reveal that our model is unstable for a small Reynolds number, and for higher numbers, the system becomes stable in nature. The dielectric constant ratio has a stabilizing influence, in which the inverse behavior is found for increasing the electrical conductivity. For the perfect dielectric case, the nonlinear stability is carried out. The analytical solution of stationary waves is discussed by introducing the linearized instability of the fixed points and Hopf bifurcation. It is found that the viscosity ratio and the permeability parameter have an opposite effect on the existence of the fixed points. A specified case of the stationary wave, namely Shkadov wave, is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, L., Chou, S.Y.: Electrohydrodynamic instability of a thin film of viscoelastic polymer underneath a lithographically manufactured mask. J. Non Newton. Fluid Mech. 125, 91–99 (2005)

    Article  MATH  Google Scholar 

  2. Merkt, D., Pototsky, A., Bestehorn, M.: Long-wave theory of bounded two-layer films with a free liquid-liquid interface: short- and long-time evolution. Phys. Fluids 17(064104), 1–20 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Uma, B., Usha, R.: A thin conducting viscous film on an inclined plane in the presence of a uniform normal electric field: bifurcation scenarios. Phys. Fluids 20(032102), 1–18 (2008)

    MATH  Google Scholar 

  4. Sisoev, G.M., Matar, O.K., Sileri, D., Lawrence, C.J.: Wave regimes in two-layer microchannel flow. Chem. Eng. Sci. 64, 3094–3102 (2009)

    Article  Google Scholar 

  5. Sadiq, I., Usha, R., Joo, S.W.: Instabilities in a liquid film flow over an inclined heated porous substrate. Chem. Eng. Sci. 65, 4443–4459 (2010)

    Article  Google Scholar 

  6. Zakaria, K.: Long interfacial waves inside an inclined permeable channel. Int. J. Non Linear Mech. 47, 42–48 (2012)

    Article  Google Scholar 

  7. Amatousse, N., Ait Abderrahmane, H., Mehidi, N.: Traveling waves on a falling weakly viscoelastic fluid film. Int. J. Eng. Sci. 54, 27–41 (2012)

    Article  MathSciNet  Google Scholar 

  8. Prieling, D., Steiner, H.: Analysis of the wall mass transfer on spinning disks using an integral boundary layer method. Chem. Eng. Sci. 101, 109–119 (2013)

    Article  Google Scholar 

  9. Prieling, D., Steiner, H.: Unsteady thin film flow on spinning disks at large Ekman numbers using an integral boundary layer method. Int. J. Heat Mass Transf. 65, 10–22 (2013)

    Article  Google Scholar 

  10. Zakaria, K., Sirwah, M.A., Alkharashi, S.A.: Non-linear analysis of creeping flow on the inclined permeable substrate plane subjected to an electric field. Int. J. Non Linear Mech. 47, 577–598 (2012)

    Article  Google Scholar 

  11. Zakaria, K., Alkharashi, S.A.: Linear stability of a thin film flow along permeable wall under alternating electric field. ZAMM Z. Angew. Math. Mech. 96, 1184–1204 (2016)

    Article  MathSciNet  Google Scholar 

  12. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  13. Pascal, J.P.: Instability of power-law fluid flow down a porous incline. J. Non Newton. Fluid Mech. 133, 109–120 (2006)

    Article  MATH  Google Scholar 

  14. Chang, H.C., Demekhin, E.A., Kopelevich, D.I.: Nonlinear evolution of waves on a vertically falling film. J. Fluid Mech. 250, 433–480 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chang, H.C.: Wave evolution on a falling film. Ann. Rev. Fluid Mech. 26, 103–136 (1994)

    Article  MathSciNet  Google Scholar 

  16. Oron, A., Gottlieb, O., Novbari, E.: Numerical analysis of a weighted-residual integral boundary-layer model for nonlinear dynamics of falling liquid films. Technical report ETR-2007-01, June 2007

  17. Ruyer-Quil, C., Manneville, P.: Modeling film flows down inclined planes. Eur. Phys. J. B 6, 277–292 (1998)

    Article  MATH  Google Scholar 

  18. Ruyer-Quil, C., Manneville, P.: Improved modeling of flows down inclined planes. Eur. Phys. J. B 15, 357–369 (2000)

    Article  MATH  Google Scholar 

  19. Ruyer-Quil, C., Manneville, P.: Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Phys. Fluids 14, 170–183 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Samanta, A., Ruyer-Quil, C., Goyeau, B.: A falling film down a slippery inclined plane. J. Fluid Mech. 684, 353–383 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Novbari, E., Oron, A.: Energy integral method model for the nonlinear dynamics of an axisymmetric thin liquid film falling on a vertical cylinder. Phys. Fluids 21(062107), 1–18 (2009)

    MATH  Google Scholar 

  22. Thompson, Alice B., Gomes, S.N., Pavliotis, G.A., Papageorgiou, D.T.: Stabilising falling liquid film flows using feedback control. Phys. Fluids 28(012107), 1–30 (2016)

    Google Scholar 

  23. Chang, H.C., Demekhin, E.A.: Complex Wave Dynamics on Thin Films, vol. 14, pp. 1–402. Elsevier, Amsterdam (2002)

    Google Scholar 

  24. Pascal, J.P.: Linear stability of fluid flow down a porous inclined plane. J. Phys. D Appl. Phys. 32, 417–422 (1999)

    Article  Google Scholar 

  25. Liu, R., Sheng Liu, Q., Zhao, S.C.: Instability of plane Poiseuille flow in a fluid-porous system. Phys. Fluids 20(104105), 1–11 (2008)

    MATH  Google Scholar 

  26. Espín, L., Corbett, A., Kumar, S.: Electrohydrodynamic instabilities in thin viscoelastic films—AC and DC fields. J. Non Newton. Fluid Mech. 196, 102–111 (2013)

    Article  Google Scholar 

  27. Shankar, V., Sharma, A.: Instability of the interface between thin fluid films subjected to electric fields. J. Colloid Interface Sci. 274, 294–308 (2004)

    Article  Google Scholar 

  28. Ruyer-Quil, C., Manneville, P.: On the speed of solitary waves running down a vertical wall. J. Fluid Mech. 531, 181–190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zakaria, K., Gamiel, Y.: Viscous flowing film instability down an inclined plane in the presence of constant electromagnetic field. Int. J. Non Linear Mech. 48, 37–43 (2013)

    Article  Google Scholar 

  30. Shkadov, V.Ya., Beloglazkin, A.N., Gerasimov, S.V.: Solitary waves in a viscous liquid film flowing down a thin vertical cylinder. Mosc. Univ. Mech. Bull. 63, 122–128 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameh A. Alkharashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakaria, K., Alkharashi, S.A. Modeling and analysis of two electrified films flow traveling down between inclined permeable parallel substrates. Acta Mech 228, 2555–2581 (2017). https://doi.org/10.1007/s00707-017-1847-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1847-y

Navigation