Skip to main content

A stability criterion for circulatory systems

Abstract

A criterion which contains necessary and sufficient conditions for spectral stability, flutter and divergence instability of circulatory systems is formulated. The conditions are expressed via the properties of a quadratic form with the coefficients expressed by means of the traces of powers of the non-conservative stiffness matrix. As corollaries, this general algebraic result leads to a number of stability conditions known in the literature.

This is a preview of subscription content, access via your institution.

References

  1. Merkin, D.R.: Introduction to the Theory of Stability. Springer, New York (1997)

    Google Scholar 

  2. Krechetnikov, R., Marsden, J.E.: Dissipation-induced instabilities in finite dimension. Rev. Mod. Phys. 79, 519–553 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  3. Kirillov, O.N.: Nonconservative Stability Problems of Modern Physics. De Gruyter, Berlin (2013)

    Book  MATH  Google Scholar 

  4. Seyranian, A.P., Mailybaev, A.A.: Multiparameter Stability Theory with Mechanical Applications. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  5. Agafonov, S.A.: Stability and motion stabilization of non-conservative mechanical systems. J. Math. Sci. 112, 4419–4497 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  6. Bulatovic, R.M.: On the stability of linear circulatory systems. Zeitschrift fur angewandte Mathematik und Physik ZAMP 50, 669–674 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  7. Gallina, P.: About the stability of non-conservative undamped systems. J. Sound Vib. 262, 977–988 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  8. Bulatovic, R.M.: A sufficient condition for instability of equilibrium of non-conservative undamped systems. Phys. Lett. A 375, 3826–3828 (2011)

    MathSciNet  Article  Google Scholar 

  9. Birtea, P., Casu, I., Comanescu, D.: Sufficient conditions for instability for circulatory and gyroscopic systems. Phys. D Nonlinear Phenom. 241, 1655–1659 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  10. Seyranian, A.P., Kirillov, O.N.: Bifurcation diagrams and stability boundaries of circulatory systems. Theor. Appl. Mech. 26, 135–168 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Kirillov, O.N.: Destabilization paradox due to breaking the Hamiltonian and reversible symmetry. Int. J. Non-Linear Mech. 42, 71–87 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  12. Baikov, A.E., Krasil’nikov, P.S.: The Ziegler effect in a non-conservative mechanical system. J. Appl. Math. Mech. 74, 51–60 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  13. Gantmacher, F.R.: The Theory of Matrices (in Russian). Nauka, Moscow (1988)

    Google Scholar 

  14. Lancaster, P., Tismenetsky, M.: The Theory of Matrices. Academic Press, San Diego (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranislav M. Bulatovic.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bulatovic, R.M. A stability criterion for circulatory systems. Acta Mech 228, 2713–2718 (2017). https://doi.org/10.1007/s00707-017-1841-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1841-4