Acta Mechanica

, Volume 228, Issue 3, pp 741–771 | Cite as

Large-eddy simulation of turbulent dispersed flows: a review of modelling approaches

Review and Perspective in Mechanics

Abstract

In large-eddy simulation (LES) of turbulent dispersed flows, modelling and numerical inaccuracies are incurred because LES provides only an approximation of the filtered velocity. Interpolation errors can also occur (on coarse-grained domains, for instance). These inaccuracies affect the estimation of the forces acting on particles, obtained when the filtered fluid velocity is supplied to the Lagrangian equation of particle motion, and accumulate in time. As a result, particle trajectories in LES fields progressively diverge from particle trajectories in DNS fields, which can be considered as the exact numerical reference: the flow fields seen by the particles become less and less correlated, and the forces acting on particles are evaluated at increasingly different locations. In this paper, we review models and strategies that have been proposed in the Eulerian–Lagrangian framework to correct the above-mentioned sources of inaccuracy on particle dynamics and to improve the prediction of particle dispersion in turbulent dispersed flows.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, N.A., Hickel, S., Franz, S.: Implicit subgrid-scale modeling by adaptive deconvolution. J. Comput. Phys. 200, 412–431 (2004)Google Scholar
  2. 2.
    Adams, N.A.: A stochastic extension of the approximate deconvolution model. Phys. Fluids 23, 055103 (2011)CrossRefGoogle Scholar
  3. 3.
    Aguirre, C., Guo, Y., Ayrault, M.: Coupling of a subgrid Lagrangian stochastic model with large-eddy simulation. C. R. Mech. 332, 627–632 (2004)MATHCrossRefGoogle Scholar
  4. 4.
    Allery, C., Béghein, C., Wacławczyk, M., Pozorski, J.: Application of POD-based dynamical systems to dispersion and deposition of particles in turbulent channel flow. Int. J. Multiphase Flow 58, 97–113 (2014)CrossRefGoogle Scholar
  5. 5.
    Amiri, A.E., Hannani, S.K., Mashayek, F.: Large-eddy simulation of particle-laden turbulent flow with heat transfer. Numer. Heat Trans. 50, 285–313 (2006)CrossRefGoogle Scholar
  6. 6.
    Apte, S.V., Mahesh, K., Moin, P., Oefelein, J.C.: Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor. Int. J. Multiphase Flow 29, 1311–1331 (2003)MATHCrossRefGoogle Scholar
  7. 7.
    Apte, S.V., Gorkhovski, M., Moin, P.: LES of atomising spray with stochastic modelling of secondary breakup. Int. J. Multiphase Flow 29, 1503–1522 (2003)MATHCrossRefGoogle Scholar
  8. 8.
    Armenio, V., Piomelli, U., Fiorotto, V.: Effect of the subgrid scales on particle motion. Phys. Fluids. 11, 3030 (1999)MATHCrossRefGoogle Scholar
  9. 9.
    Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flows. Ann. Rev. Fluid Mech. 42, 11–33 (2010)MATHCrossRefGoogle Scholar
  10. 10.
    Balachandar, S.: A scaling analysis for point-particle approaches to turbulent multiphase flows. Int. J. Multiphase Flow 35, 801–810 (2009)CrossRefGoogle Scholar
  11. 11.
    Bassenne, M., Urzay, J., Moin, P.: Extraction of coherent clusters in particle-laden turbulent flows using wavelet filters, pp. 107–121. Annual Research Briefs, Center for Turbulence Research, Stanford University (2016)Google Scholar
  12. 12.
    Berrouk, A., Laurence, D., Riley, J., Stock, D.: Stochastic modelling of inertial particle dispersion by subgrid motion for LES of high Reynolds number pipe flow. J. Turbul. 8, 1–20 (2007)CrossRefGoogle Scholar
  13. 13.
    Bianco, F., Chibbaro, S., Marchioli, C., Salvetti, M.V., Soldati, A.: Intrinsic filtering errors of Lagrangian particle tracking in LES flow fields. Phys. Fluids 24, 045103 (2012)CrossRefGoogle Scholar
  14. 14.
    Bini, M., Jones, W.P.: Particle acceleration in turbulent flows: A class of nonlinear stochastic models for intermittency. Phys. Fluids 19, 035104 (2007)MATHCrossRefGoogle Scholar
  15. 15.
    Bini, M., Jones, W.P.: Large-eddy simulation of particle-laden turbulent flows. J. Fluid Mech. 614, 207–252 (2008)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Boivin, M., Simonin, O., Squires, K.D.: On the prediction of gas-solid flows with two-way coupling using large eddy simulation. Phys. Fluids 12, 2080–2090 (2000)MATHCrossRefGoogle Scholar
  17. 17.
    Breuer, M., Hoppe, F.: Influence of a cost-efficient Langevin sub-grid scale model on the dispersed phase of large-eddy simulations of turbulent bubble-laden and particle-laden flows. Int. J. Multiphase Flow 89, 23–44 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Calzavarini, E., Donini, A., Lavezzo, V., Marchioli, C., Pitton, E., Soldati, A., Toschi, F.: On the error estimate in sub-grid models for particles in turbulent flows. In: Kuerten, J.G.M., Geurts, B., Armenio, V., Frohlich, J. (eds.) Direct and Large-Eddy Simulation VIII. ERCOFTAC Series, vol. 15, pp. 171–176. Springer, Dordrecht (2011)CrossRefGoogle Scholar
  19. 19.
    Caporaloni, M., Tampieri, F., Trombetti, F., Vittori, O.: Transfer of particles in non-isotropic air turbulence. J. Atmos. Sci. 32, 565–568 (1975)CrossRefGoogle Scholar
  20. 20.
    Casciola, C.M., Gualtieri, P., Picano, F., Sardina, G., Troiani, G.: Dynamics of inertial particles in free jets. Phys. Scr. T142, 014001 (2010)CrossRefGoogle Scholar
  21. 21.
    Cernick, M.J., Tullis, S.W., Lightstone, M.F.: Particle subgrid scale modelling in large-eddy simulations of particle-laden turbulence. J. Turbul. 16, 101–135 (2015)CrossRefGoogle Scholar
  22. 22.
    Chen, J., Jin, G., Zhang, J.: Large eddy simulation of orientation and rotation of ellipsoidal particles in isotropic turbulent flows. J. Turbul. 17, 308–326 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Chibbaro, S., Marchioli, C., Salvetti, M.V., Soldati, A.: Particle tracking in LES flow fields: conditional Lagrangian statistics of filtering error. J. Turbul. 15, 22–33 (2014)CrossRefGoogle Scholar
  24. 24.
    Chibbaro, S., Minier, J.-P.: A note on the consistency of hybrid Eulerian/Lagrangian approach to multiphase flows. Int. J. Multiphase Flow 37, 293–297 (2011)CrossRefGoogle Scholar
  25. 25.
    Csanady, G.: Turbulent diffusion of heavy particles in the atmosphere. J. Atmos. Sci. 20, 201–208 (1963)CrossRefGoogle Scholar
  26. 26.
    Derksen, J.J., van den Akker, H.E.A., Sundaresan, S.: Two-way coupled large-eddy simulations of the gas-solid flow in cyclone separators. AIChE J. 54, 872–885 (2008)CrossRefGoogle Scholar
  27. 27.
    Dritselis, C.D., Vlachos, N.S.: Large eddy simulation of gas-particle turbulent channel flow with momentum exchange between the phases. Int. J. Multiphase Flow 37, 706–721 (2011)CrossRefGoogle Scholar
  28. 28.
    Dupuy, M., Xayasenh, A., Duval, H., Waz, E.: Analysis of non-Brownian particle deposition from turbulent liquid-flow. AIChE J. 62, 891–904 (2016)CrossRefGoogle Scholar
  29. 29.
    Fan, F.-G., Ahmadi, G.: A sublayer model for turbulent deposition of particles in vertical ducts with smooth and rough surfaces. J. Aerosol Sci. 24, 45–64 (1993)CrossRefGoogle Scholar
  30. 30.
    Fede, P., Simonin, O., Villedieu, P.: Monte-Carlo simulation of colliding particles or coalescing droplets transported by a turbulent flow in the framework of a joint fluid-particle pdf approach. Int. J. Multiphase Flow 74, 165–183 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Fede, P., Simonin, O.: Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles. Phys. Fluids 18, 045103 (2006)CrossRefGoogle Scholar
  32. 32.
    Fede, P., Simonin, O., Villedieu, P., Squires, K.D.: Stochastic modelling of the turbulent subgrid fluid velocity along inertial particle trajectories. In: Proceedings of Summer Program, Center for Turbulence Research, Stanford University, pp. 22–33 (2006)Google Scholar
  33. 33.
    Fessler, J.R., Kulick, J.D., Eaton, J.K.: Preferential concentration of heavy-particles in a turbulent channel flow. Phys. Fluids 6, 3742–3749 (1994)CrossRefGoogle Scholar
  34. 34.
    Flohr, P., Vassilicos, J.C.: A scalar subgrid model with flow structure for large-eddy simulations of scalar variances. J. Fluid Mech. 407, 315–349 (2000)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Fox, R.O.: Large-eddy-simulation tools for multiphase flows. Ann. Rev. Fluid Mech. 44, 47–76 (2012)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Fukagata, K., Zahrai, S., Bark, F.: Dynamics of Brownian particles in a turbulent channel flow. Heat Mass Transf. 40, 715–726 (2004)CrossRefGoogle Scholar
  37. 37.
    Fung, J.C.H., Hunt, J.C.R., Malik, N.A., Perkins, R.J.: Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech. 236, 281–318 (1992)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Gatignol, R.: The Faxén formulae for a rigid sphere in an unsteady non-uniform Stokes flow. J. Méch. Théor. Appl. 1, 143–160 (1983)MATHGoogle Scholar
  39. 39.
    Geurts, B.J., Kuerten, J.G.M.: Ideal stochastic forcing for the motion of particles in large-eddy simulation extracted from direct numerical simulation of turbulent channel flow. Phys. Fluids 24, 081702 (2012)CrossRefGoogle Scholar
  40. 40.
    Germano, M.: Turbulence: the filtering approach. J. Fluid Mech. 238, 325–336 (1992)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Germano, M.: Differential filters for the large-eddy numerical simulation of turbulent flows. Phys. Fluids 29, 1755–1757 (1986)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Germano, M.: Differential filters of elliptic type. Phys. Fluids 29, 1757–1758 (1986)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Gicquel, L.Y.M., Givi, P., Jaberi, F.A., Pope, S.B.: Velocity filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 14, 1196–1213 (2002)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Gobert, C., Manhart, M.: Subgrid modelling for particle-LES by spectrally optimised interpolation (SOI). J. Comput. Phys. 230, 7796–7820 (2011)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Gobert, C., Manhart, M.: A-priori and a-posteriori analysis of models for large-eddy simulation of particle-laden flow. Phys. Fluid Dyn. 1004, 1–18 (2011)Google Scholar
  46. 46.
    Gobert, C.: Analytical assessment of models for large eddy simulation of particle laden flow. J. Turbul. 11, 1–24 (2010)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Gualtieri, P., Casciola, C.M., Benzi, R., Piva, R.: Preservation of statistical properties in large-eddy simulation of shear turbulence. J. Fluid Mech. 592, 471–494 (2007)MATHCrossRefGoogle Scholar
  48. 48.
    Gualtieri, P., Picano, F., Sardina, G., Casciola, C.M.: Statistics of particle pair relative velocity in the homogeneous shear flow. Phys. D 241, 245–250 (2012)CrossRefGoogle Scholar
  49. 49.
    Guha, A.: Transport and deposition of particles in turbulent and laminar flow. Ann. Rev. Fluid Mech. 40, 311–341 (2008)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Guingo, M., Minier, J.-P.: A stochastic model of coherent structures for particle deposition in turbulent flows. Phys. Fluids 20, 053303 (2008)MATHCrossRefGoogle Scholar
  51. 51.
    Innocenti, A., Marchioli, C., Chibbaro, S.: Lagrangian filtered density function for LES-based stochastic modelling of turbulent dispersed flows. Phys. Fluids 27, 053305 (2016)Google Scholar
  52. 52.
    Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous flow. Proc. R. Soc. A 102, 161–179 (1922)MATHCrossRefGoogle Scholar
  53. 53.
    Jin, G., He, G.-W., Wang, L.-P.: Large-eddy simulation of turbulent collision of heavy particles in isotropic turbulence. Phys. Fluids 22, 055106 (2010)MATHCrossRefGoogle Scholar
  54. 54.
    Jin, G., He, G.-W., Wang, L.-P., Zhang, J.: Subgrid scale fluid velocity timescales seen by inertial particles in large-eddy simulation of particle-laden turbulence. Int. J. Multiphase Flow 36, 432–437 (2010)CrossRefGoogle Scholar
  55. 55.
    Jin, G., He, G.-W.: A nonlinear model for the subgrid timescale experienced by heavy particles in large-eddy simulation of isotropic turbulence with a stochastic differential equation. New J. Phys. 15, 035011 (2010)CrossRefGoogle Scholar
  56. 56.
    Jin, G., Zhang, J., He, G.-W., Wang, L.-P.: Assessment of large-eddy simulation in capturing preferential concentration of heavy particles in isotropic turbulent flows. Phys. Scr. T142, 014061 (2010)CrossRefGoogle Scholar
  57. 57.
    Jin, C., Potts, I., Reeks, M.W.: A simple stochastic quadrant model for the transport and deposition of particles in turbulent boundary layers. Phys. Fluids 27, 053305 (2015)CrossRefGoogle Scholar
  58. 58.
    Kenjeres, S.: On recent progress in modelling and simulations of multi-scale transfer of mass, momentum and particles in bio-medical applications. Flow Turbul. Combust. 96, 837–860 (2016)CrossRefGoogle Scholar
  59. 59.
    Khan, M.A.I., Luo, X.Y., Nicolleau, F.C.G.A., Tucker, P.G.: Lo Iacono, G.: Effects of LES sub-grid flow structure on particle deposition in a plane channel with a ribbed wall. Int. J. Numer. Methods. Biomed. Eng. 26, 999–1015 (2010)MATHGoogle Scholar
  60. 60.
    Knorps, M., Pozorski, J.: An inhomogeneous stochastic subgrid model for particle dispersion in Large-Eddy Simulation. In: Direct and Large-Eddy Simulation IX (Eds.: Fröhlich J. et al.), pp. 671–678 (2015)Google Scholar
  61. 61.
    Kuerten, J.G.M.: Point-particle DNS and LES of particle-laden turbulent flow–a state-of-the-art review. Flow Turbul. Combust. 97, 689–713 (2016)CrossRefGoogle Scholar
  62. 62.
    Kuerten, J.G.M.: Subgrid modeling in particle-laden channel flow. Phys. Fluids 18, 025108 (2006)CrossRefGoogle Scholar
  63. 63.
    Kuerten, J.G.M., Vreman, A.W.: Can turbophoresis be predicted by large-eddy simulation? Phys. Fluids 17, 011701 (2005)MATHCrossRefGoogle Scholar
  64. 64.
    Lazaro, B.J., Lasheras, J.C.: Particle dispersion in the developing free shear layer. Part 1. Unforced flow. J. Fluid Mech. 235, 135–178 (1992)Google Scholar
  65. 65.
    Lazaro, B.J., Lasheras, J.C.: Particle dispersion in the developing free shear layer. Part 2. Forced flow. J. Fluid Mech. 235, 179–221 (1992)CrossRefGoogle Scholar
  66. 66.
    Lessani, B., Nakhaei, M.H.: Large-eddy simulation of particle-laden turbulent flow with heat transfer. Int. J. Heat Mass Transf. 67, 974–983 (2003)CrossRefGoogle Scholar
  67. 67.
    Le Ribault, C., Simoens, S., Vinkovic, I.: Hybrid large eddy simulation/Lagarangian stochastic model for turbulent passive and reactive scalar dispersion in a plane jet. Chem. Eng. Commun. 199, 435–460 (2012)CrossRefGoogle Scholar
  68. 68.
    Lu, H., Rutland, C.J.: Structural subgrid-scale modeling for large-eddy simulation: a review. Acta Mech. Sin. 32, 567–578 (2016)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Mallouppas, G., van Wachem, B.: Large eddy simulations of turbulent particle-laden channel flow. Int. J. Multiphase Flow 54, 65–75 (2013)CrossRefGoogle Scholar
  70. 70.
    Marchioli, C., Armenio, V., Salvetti, M.V., Soldati, A.: Mechanisms for deposition and resuspension of heavy particles in turbulent flow over wavy interfaces. Phys. Fluids 18, 025102 (2006)CrossRefGoogle Scholar
  71. 71.
    Marchioli, C., Picciotto, M., Soldati, A.: Particle dispersion and wall-dependent fluid scales in turbulent bounded flow: implications for local equilibrium models. J. Turbul. 7, 1–12 (2006)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Marchioli, C., Salvetti, M.V., Soldati, A.: Appraisal of energy recovering sub-grid scale models for large-eddy simulation of turbulent dispersed flows. Acta Mech. 201, 277–296 (2008)MATHCrossRefGoogle Scholar
  73. 73.
    Marchioli, C., Salvetti, M.V., Soldati, A.: Some issues concerning large-eddy simulation of inertial particle dispersion in turbulent bounded flows. Phys. Fluids 20, 040603 (2008)MATHCrossRefGoogle Scholar
  74. 74.
    Marchioli, C., Soldati, A.: Mechanisms for particle transfer and segregation in turbulent boundary layer. J. Fluid Mech. 468, 283–315 (2002)MATHCrossRefGoogle Scholar
  75. 75.
    Marchioli, C., Soldati, A.: Rotation statistics of fibers in wall shear turbulence. Acta Mech. 224, 2311–2329 (2013)MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Marchioli, C., Soldati, A., Kuerten, J.G.M., Arcen, B., Taniere, A., Goldensoph, G., Squires, K.D., Cargnelutti, M.F., Portela, L.M.: Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Int. J. Multiphase Flow 34, 879–893 (2008)CrossRefGoogle Scholar
  77. 77.
    Marchioli, C., Soldati, A., Salvetti, M.V., Kuerten, J.G.M., Konan, A., Fede, P., Simonin, O., Squires, K.D., Gobert, C., Manhart, M., Jaszczur, M., Portela, L.M.: Benchmark test on particle-laden channel flow with point-particle LES. In: Kuerten, J.G.M., Geurts, B., Armenio, V., Frohlich, J. (eds.) Direct and Large-Eddy Simulation VIII. ERCOFTAC Series, vol. 15, pp. 177–182. Springer, Dordrecht (2011)CrossRefGoogle Scholar
  78. 78.
    Mason, P.J.: Large-eddy simulation: a critical review of the technique. Q. J. R. Meteorol. Soc. 120, 1–26 (1994)CrossRefGoogle Scholar
  79. 79.
    Maxey, M., Riley, J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883–889 (1983)MATHCrossRefGoogle Scholar
  80. 80.
    Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Ann. Rev. Fluid Mech. 32, 1–32 (2000)MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    Michałek, W.R., Kuerten, J.G.M., Liew, R., Zeegers, C.H., Pozorski, J., Geurts, B.J.: A hybrid deconvolution stochastic model for LES of particle-laden flow. Phys. Fluids 25, 123202 (2013)CrossRefGoogle Scholar
  82. 82.
    Minier, J.-P.: Statistical description of polydisperse turbulent two-phase flows. Phys. Rep. 665, 1–122 (2016)MathSciNetCrossRefGoogle Scholar
  83. 83.
    Minier, J.-P.: On Lagrangian stochastic methods for turbulent polydispersed two-phase reactive flows. Prog. Energy Combust. Sci. 50, 1–62 (2015)CrossRefGoogle Scholar
  84. 84.
    Minier, J.-P., Profeta, C.: Kinetic and dynamic probability-density-function descriptions of turbulent dispersed two-phase flows. Phys. Rev. E 92, 053020 (2015)CrossRefGoogle Scholar
  85. 85.
    Minier, J.-P., Chibbaro, S., Pope, S.B.: Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows. Phys. Fluids 26, 113303 (2014)CrossRefGoogle Scholar
  86. 86.
    Minier, J.-P., Peirano, E.: The PDF approach to turbulent polydispersed two-phase flows. Phys. Rep. 352, 1–214 (2001)MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    Monchaux, R., Bourgoin, M., Cartellier, A.: Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22, 103304 (2010)CrossRefGoogle Scholar
  88. 88.
    Oefelein, J.C.: Large eddy simulation of turbulent combustion processes in propulsion and power systems. Phys. Fluids 42, 2–37 (2006)Google Scholar
  89. 89.
    Park, G.I., Bassenne, M., Urzay, J., Moin, P.: A simple dynamic subgrid-scale model for LES of particle-laden turbulence Phys. Rev. Fluids 2, 024302 (2017)CrossRefGoogle Scholar
  90. 90.
    Park, G.I., Urzay, J., Bassenne, M., Moin, P.: A dynamic subgrid-scale model based on differential filters for LES of particle-laden turbulent flows, pp. 17–26. Annual Research Briefs, Center for Turbulence Research, Stanford University (2015)Google Scholar
  91. 91.
    Peirano, E., Chibbaro, S., Pozorski, J., Minier, J.-P.: Mean-field/PDF numerical approach for polydispersed turbulent two-phase flows. Prog. Energy Combust. Sci. 32, 315–371 (2006)CrossRefGoogle Scholar
  92. 92.
    Pesmazoglou, I., Kempf, A.M., Martinez, S.N.: A dynamic model for the Lagrangian stochastic dispersion coefficient. Phys. Fluids 25, 125108 (2013)CrossRefGoogle Scholar
  93. 93.
    Picciotto, M., Marchioli, C., Soldati, A.: Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers. Phys. Fluids 17, 098101 (2005)MATHCrossRefGoogle Scholar
  94. 94.
    Piomelli, U., Balaras, E.: Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34, 349–374 (2002)MathSciNetMATHCrossRefGoogle Scholar
  95. 95.
    Pitsch, H.: Large-eddy simulation of turbulent combustion. Ann. Rev. Fluid Mech. 38, 453–482 (2006)MathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    Pope, S.: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6, 35 (2004)CrossRefGoogle Scholar
  97. 97.
    Pope, S.: Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 23–63 (1994)MathSciNetMATHCrossRefGoogle Scholar
  98. 98.
    Pozorski, J.: Models of turbulent flows and particle dynamics. In: Minier, J.P., Pozorski, J. (eds.) Particles in Wall-Bounded Turbulent Flows: Deposition, Resuspension and Agglomeration. CISM International Centre for Mechanical Sciences, vol. 571, pp. 97–150. Springer, Wien (2017)CrossRefGoogle Scholar
  99. 99.
    Pozorski, J., Knorps, M., Minier J.-P., Kuerten, J.G.M.: Anisotropic stochastic dispersion model for LES of particle-laden turbulent flows. In: Proceedings of Engineering Turbulence Modeling and Measurements, vol. 9, Thessaloniki, Greece, 6–8 June (2012)Google Scholar
  100. 100.
    Pozorski, J., Apte, S.V.: Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion. Int. J. Multiphase Flow 35, 118–128 (2009)CrossRefGoogle Scholar
  101. 101.
    Pozorski, J., Waclawczyk, T., Luniewski, M.: LES of turbulent channel flow and heavy particle dispersion. J. Theor. Appl. Mech. 45, 643–657 (2007)Google Scholar
  102. 102.
    Pozorski, J., Luniewski, M.: Analysis of SGS particle dispersion model in LES of channel flow. Quality and Reliability of LES 331-342 (2008)Google Scholar
  103. 103.
    Raman, V., Fox, R.O.: Modeling of fine-particle formation in turbulent flames. Ann. Rev. Fluid Mech. 48, 159–190 (2016)MATHCrossRefGoogle Scholar
  104. 104.
    Rasam, A., Pouransari, Z., Vervisch, L., Johansson, A.V.: Assessment of subgrid-scale stress statistics in non-premixed turbulent wall-jet flames. J. Turbul. 17, 471–490 (2016)MathSciNetCrossRefGoogle Scholar
  105. 105.
    Ray, B., Collins, L.R.: Investigation of sub-Kolmogorov inertial particle pair dynamics in turbulence using novel satellite particle simulations. J. Fluid Mech. 720, 192–211 (2013)MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Ray, B., Collins, L.R.: A subgrid model for clustering of high-inertia particles in large-eddy simulations of turbulence. J. Turbul. 15, 366–385 (2014)MathSciNetCrossRefGoogle Scholar
  107. 107.
    Ray, B., Collins, L.R.: Preferential concentration and relative velocity statistics of inertial particles in Navier-Stokes turbulence with and without filtering. J. Fluid Mech. 680, 488–510 (2011)MathSciNetMATHCrossRefGoogle Scholar
  108. 108.
    Reeks, M.W.: The transport of discrete particles in inhomogeneous turbulence. J. Aerosol Sci. 14, 729–739 (1983)CrossRefGoogle Scholar
  109. 109.
    Keshevarzi, Reza: A., Nagi Ziaei, A., Homayoun, E., Shirvani, A.: Fractal-Markovian scaling of turbulent bursting processes in open channel flows. Chaos Solitons Fractals 25, 307–318 (2005)CrossRefGoogle Scholar
  110. 110.
    Rosa, B., Pozorski, J.: Analysis of subfilter effects on inertial particles in forced isotropic turbulence. In: Proceedings 9th International Conference on Multiphase Flows, pp. 1–5. Firenze, Italy (2016)Google Scholar
  111. 111.
    Sabel’nikov, V., Chtab-Desportes, A., Gorkhovski, M.: New sub-grid stochastic acceleration model in LES of high-Reynolds-number flows. Eur. Phys. J. B 80, 177–187 (2011)CrossRefGoogle Scholar
  112. 112.
    Salazar, J.P.L.C., de Jong, J., Cao, L., Woodward, S.H., Meng, H., Collins, L.R.: Experimental and numerical investigation of inertial particle clustering in isotropic turbulence. J. Fluid Mech. 600, 245–256 (2008)MATHCrossRefGoogle Scholar
  113. 113.
    Salmanzadeh, M., Rahnama, M., Ahmadi, G.: Effect of sub-grid scales on large eddy simulation of particle deposition in a turbulent channel flow. Aerosol Sci. Tech. 44, 796–806 (2010)CrossRefGoogle Scholar
  114. 114.
    Scotti, A., Meneveau, C.: A fractal interpolation model for large-eddy simulation of turbulent flows. Phys. D 127, 198–232 (1999)MathSciNetMATHCrossRefGoogle Scholar
  115. 115.
    Sengupta, K., Shotorban, B., Jacobs, G.B., Mashayek, F.: Spectral-based simulations of particle-laden turbulent flows. Int. J. Multiphase Flow 35, 811–826 (2009)CrossRefGoogle Scholar
  116. 116.
    Shotorban, B., Mashayek, F.: A stochastic model for particle motion in large-eddy simulation. J. Turbul. 7, 1–13 (2006)MathSciNetCrossRefGoogle Scholar
  117. 117.
    Shotorban, B., Mashayek, F.: Modeling subgrid-scale effects on particles by approximate deconvolution. Phys. Fluids 17, 081701 (2005)MATHCrossRefGoogle Scholar
  118. 118.
    Shotorban, B., Zhang, K.K.Q., Mashayek, F.: Improvement of particle concentration prediction in large-eddy simulation by defiltering. Int. J. Heat Mass Transf. 50, 3728–3739 (2007)MATHCrossRefGoogle Scholar
  119. 119.
    Smagorinsky, J.: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 48, 41–71 (1963)Google Scholar
  120. 120.
    Soldati, A.: Particles-turbulence interactions in boundary layers. ZAMM—J. Applied Math. Mech. 85, 683–699 (2005)Google Scholar
  121. 121.
    Soldati, A., Marchioli, C.: Sediment transport in steady turbulent boundary layers: potentials, limitations, and perspectives for Lagrangian tracking in DNS and LES. Adv. Water Resour. 48, 18–30 (2012)CrossRefGoogle Scholar
  122. 122.
    Soldati, A., Marchioli, C.: Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study. Int. J. Multiphase Flow 35, 827–839 (2009)CrossRefGoogle Scholar
  123. 123.
    Stolz, P., Adams, N.A., Kleiser, L.: An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13, 997–1015 (2001)MATHCrossRefGoogle Scholar
  124. 124.
    Subramanian, S.: Lagrangian-Eulerian methods for multiphase flows. Prog. Energy Combust. Sci. 39, 215–245 (2013)CrossRefGoogle Scholar
  125. 125.
    Urzay, J., Bassenne, M., Park, G.I., Moin, P.: Characteristic regimes of subgrid-scale coupling in LES of particle-laden turbulent flows. In: Proceedings of Summer Program, Center for Turbulence Research, Stanford University, pp. 3–13 (2014)Google Scholar
  126. 126.
    Vinkovic, I., Aguirre, C., Ayrault, M., Simoens, S.: Large-eddy simulation of the dispersion of solid particles in a turbulent boundary layer. Bound. Layer Meteorol. 121, 283–311 (2006)MATHCrossRefGoogle Scholar
  127. 127.
    Vinkovic, I., Aguirre, C., Simoens, S.: Large-eddy simulation and Lagrangian stochastic modeling of passive scalar dispersion in a turbulent boundary layer. J. Turbul. 7, 1–14 (2006)MathSciNetMATHCrossRefGoogle Scholar
  128. 128.
    Vinkovic, I., Doppler, D., Lelouvetel, J., Buffat, M.: Direct numerical simulation of particle interaction with ejections in turbulent channel flows. Int. J. Multiphase Flow 37, 187–197 (2011)CrossRefGoogle Scholar
  129. 129.
    Voth, G., Soldati, A.: Anisotropic particles in turbulence. Ann. Rev. Fluid Mech. 49, 249–276 (2017)CrossRefGoogle Scholar
  130. 130.
    Wacławczyk, M., Pozorski, J.: Two-point velocity statistics and the POD analysis of the near-wall region in a turbulent channel flow. J. Theor. Appl. Mech. 40, 895–916 (2002)Google Scholar
  131. 131.
    Wang, Q., Squires, K.D.: Large eddy simulation of particle-laden turbulent channel flow. Phys. Fluids 8, 1207–1223 (1996)MATHCrossRefGoogle Scholar
  132. 132.
    Wang, Q., Squires, K.D., Simonin, O.: Large eddy simulation of turbulent gas-solid flows in a vertical channel and evaluation of second-order models. Int. J. Heat Mass Transf. 19, 505–511 (1998)Google Scholar
  133. 133.
    Wang, Q., Stock, D.: Dispersion of heavy particles by turbulent motion. J. Atmos. Sci. 50, 1897–1913 (1993)CrossRefGoogle Scholar
  134. 134.
    Weil, J., Sullivan, P., Moeng, C.: The use of large-eddy simulations in Lagrangian particle dispersion models. J. Atmos. Sci. 61, 2877–2887 (2004)CrossRefGoogle Scholar
  135. 135.
    Wells, M., Stock, D.: The effects of crossing trajectories on the dispersion of particles in a turbulent flow. J. Fluid Mech. 136, 31–62 (1983)CrossRefGoogle Scholar
  136. 136.
    Willmarth, W.W., Lu, S.S.: Structure of the Reynolds stress near the wall. J. Fluid Mech. 55, 65–92 (1972)CrossRefGoogle Scholar
  137. 137.
    Yang, Y., He, G.-W., Wang, L.-P.: Effects of subgrid-scale modeling on Lagrangian statistics in large-eddy simulation. J. Turbul. 9, 1–24 (2008)MathSciNetMATHGoogle Scholar
  138. 138.
    Yeh, F., Lei, U.: On the motion of small particles in a homogeneous isotropic turbulent flow. Phys. Fluids A 3, 2571–2586 (1991)MATHCrossRefGoogle Scholar
  139. 139.
    Yeh, F., Lei, U.: On the motion of small particles in a homogeneous turbulent shear flow. Phys. Fluids A 3, 2758–2776 (1991)MATHCrossRefGoogle Scholar
  140. 140.
    Yi, C., Li, J., Liu, Z.-H., Wang, L., Zheng, C.-G.: Subgrid-scale fluid statistics along the inertial particle trajectory in isotropic turbulence. Chin. Phys. Lett. 29, 094701 (2012)CrossRefGoogle Scholar
  141. 141.
    Yoshizawa, A.: A statistically-derived subgrid model for the large-eddy simulation of turbulence. Phys. Fluids 25, 1532–1538 (1982)MATHCrossRefGoogle Scholar
  142. 142.
    Zaichik, L.I., Alipchenkov, V.M., Sinaiski, E.G.: Particles in Turbulent Flows. Wiley-VCH, Weinheim (2008)CrossRefGoogle Scholar
  143. 143.
    Zamansky, R., Vinkovic, I., Gorokhovski, M.: Acceleration in turbulent channel flow: universalities in statistics, subgrid stochastic models and an application. J. Fluid Mech. 721, 627–668 (2013)MATHCrossRefGoogle Scholar
  144. 144.
    Zhou, L.: Advances in studies on turbulent dispersed multiphase flows. Chin. J. Chem. Eng. 18, 889–898 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Dipartimento Politecnico di Ingegneria e ArchitetturaUniversitá di UdineUdineItaly

Personalised recommendations