Skip to main content

Analytic model for Rayleigh wave propagation in piezoelectric layer overlaid orthotropic substratum

Abstract

An analytical approach is adopted to investigate Rayleigh waves in a layered composite structure with corrugated boundaries. The structure of the model has been taken in such a way that the pre-stressed piezoelectric layer with rotation is lying over a pre-stressed, rotating, gravitational orthotropic substrate. The frequency equations of the considered wave have been obtained in the form of a determinant for both electrically open and short cases. Notable effects of various parameters (piezoelectric constant, initial stress, rotation, undulation parameter and position parameter) on Rayleigh wave velocity have been observed. Numerical computation and graphical demonstration have been carried out. The obtained results are matched with existing results, under certain conditions. Also, the analytical solution of the problem is matched and found in good agreement with the solution obtained by the finite element method. The outcomes are widely useful for the development and characterization of rotation sensors and SAW devices.

This is a preview of subscription content, access via your institution.

References

  1. Bluestein, J.L.: A new surface wave in piezoelectric medium. Appl. Phys. Lett. 13, 412–413 (1968)

    Article  Google Scholar 

  2. Cheng, N.C., Sun, C.T.: Wave propagation in two-layered piezoelectric plates. J. Acoust. Soc. Am. 57, 632–638 (1974)

    Article  MATH  Google Scholar 

  3. Fang, H., Yang, J., Jiang, Q.: Surface acoustic waves propagating over a rotating piezoelectric half-space. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 998–1004 (2001)

    Article  Google Scholar 

  4. Wang, Q.: Wave propagation in a piezoelectric coupled solid medium. J. Appl. Mech. 69, 819–824 (2002)

    Article  MATH  Google Scholar 

  5. Chai, J.F., Wu, T.T.: Propagation of surface waves in a pre-stressed piezo-electric material. J. Acoust. Soc. Am. 100, 2112–2122 (1996)

    Article  Google Scholar 

  6. Simionescu-Panait, O.: The influence of initial fields on wave propagation in piezoelectric crystals. Int. J. Appl. Electromagn. Mech. 12, 241–251 (2000)

    Google Scholar 

  7. Liu, H., Kuang, Z.B., Cai, Z.M.: Propagation of surface acoustic waves in pre-stressed anisotropic layered piezoelectric structures. Acta Mech. Solida Sin. 16, 16–23 (2003)

    Google Scholar 

  8. Singh, B.: Wave propagation in a pre-stressed piezoelectric half-space. Acta Mech. 211, 337–344 (2010)

    Article  MATH  Google Scholar 

  9. Son, M.S., Kang, Y.J.: The effect of initial stress on the propagation behavior of SH waves in piezoelectric coupled plates. Ultrasonics 51, 489–495 (2011)

    Article  Google Scholar 

  10. Yang, J.S.: A review of a few topics in piezoelectricity. Appl. Mech. Rev. 59, 335–345 (2006)

    Article  Google Scholar 

  11. Du, J., Jin, X., Wang, J., Xian, K.: Love wave propagation in functionally graded piezoelectric material layer. Ultrasonics 46(1), 13–22 (2007)

    Article  Google Scholar 

  12. Cao, X., Jin, F., Jeon, I.: Rayleigh surface waves in a piezoelectric wafer with subsurface damage. Appl. Phys. Lett. 95, 261906 (2009)

    Article  Google Scholar 

  13. Pang, Y., Liu, J.X., Wang, Y.S., Zhao, X.F.: Propagation of Rayleigh-type surface waves in a transversely isotropic piezoelectric layer over a piezomagnetic half-space. J. Appl. Phys. 103, 074901 (2008)

    Article  Google Scholar 

  14. Li, P., Jin, F.: Excitation and propagation of shear horizontal waves in a piezoelectric layer imperfectly bonded to a metal or elastic substrate. Acta Mech. 226, 267–284 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Abd-Alla, A.M.: Propagation of Rayleigh waves in an elastic half-space of orthotropic material. Appl. Math. Comput. 99(1), 61–69 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Abd-Alla, A.M., Mahmoud, S.R., Abo-Dahab, S.M., Helmy, M.I.: Influence of rotation, magnetic field, initial stress and gravity on Rayleigh waves in a homogeneous orthotropic elastic half-space. Appl. Math. Sci. 4, 91–108 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Clarke, N.S., Burdness, J.S.: Rayleigh waves on a rotating surface. ASME J. Appl. Mech. 61, 724–726 (1994)

    Article  Google Scholar 

  18. Hurd, R.A.: The propagation of an electromagnetic wave along an infinite corrugated surface. Can. J. Phys. 32(12), 727–734 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  19. Glass, N.E., Maradudin, A.A.: Leaky surface-elastic waves on both flat and strongly corrugated surfaces for isotropic. Nondissipative Media 54, 796 (1983)

    Google Scholar 

  20. Singh, A.K., Parween, Z., Kumar, S.: Love-type wave in a corrugated piezoelectric structure. J. Intell. Mater. Syst. Struct. (2016). doi:10.1177/1045389X16635843

    Google Scholar 

  21. Singh, S.S.: Love wave at a layer medium bounded by irregular boundary surfaces. J. Vib. Control 17, 789–795 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Datta, B.K.: Some observation on interaction of Rayleigh waves in an elastic solid with gravity field. Rev. Rouaine Sci. Tech. Ser. Mech. Appl. 31(4), 369–374 (1986)

    Google Scholar 

  23. Abd-Alla, A.M., Abo-Dahab, S.M., Al-Thamali, T.A.: Propagation of Rayleigh waves in a rotating orthotropic material elastic half-space under initial stress and gravity. J. Mech. Sci. Technol. 26(9), 2815–2823 (2012)

    Article  Google Scholar 

  24. Rayleigh, J.W.S.: On waves propagating along the plane surface of an elastic solid. Proc. Lond. Math. Soc. 17, 4–11 (1887)

    MathSciNet  MATH  Google Scholar 

  25. Weis, R.S., Gaylord, T.K.: Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A 37, 191–203 (1985)

    Article  Google Scholar 

  26. Bathe, K.J.: Finite Element Procedure. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  27. Liu, Y.: Introduction to the finite element method. Lecture Notes (2003)

  28. Bathe, H.J.: Finite Element Procedures in Engineering Analysis. Prentice Hall Inc., New York (1982)

    Google Scholar 

  29. Davies, A.J.: The Finite Element Method. A First Approach. Oxford University Press, Oxford (1980)

    MATH  Google Scholar 

  30. Reinen, T.A., Berg, T.: Tredimensjonal modellering av piezoelektriske svingarar. Sluttrapport. Report no. STF40 A89032, ELAB-RUNIT, Trondheim, Norway (1989) (in Norwegian)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev A. Sahu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, S., Sahu, S.A. & Singhal, A. Analytic model for Rayleigh wave propagation in piezoelectric layer overlaid orthotropic substratum. Acta Mech 228, 495–529 (2017). https://doi.org/10.1007/s00707-016-1708-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1708-0