Abstract
In this paper, we present a general method of finding conserved quantities, i.e., fractional Jacobi last multiplier method, and explore its applications to fractional dynamical system. Based on the definition of Riesz–Riemann–Liouville fractional derivative, we study general fractional dynamical equations, construct its fractional Jacobi last multiplier, and, respectively, give the determining equation and three important properties of the multiplier. And then, we present the fractional Jacobi last multiplier method, which includes three theorems of finding conserved quantities of fractional dynamical systems. Further, in fractional framework, we explore the relation between Lie symmetry and Jacobi last multiplier. Furthermore, the fractional Jacobi last multiplier method is applied to the fractional generalized Hamiltonian system, the complete fractional Hamiltonian system, the standard fractional Hamiltonian system, the fractional Nambu system and the fractional Birkhoffian system, and five corresponding propositions are given. Also by using the fractional Jacobi last multiplier method, we respectively find the conserved quantities of a fractional relativistic Buchdahl model, a fractional Euler–Poinsot model and a fractional Duffing oscillator model. This work constructs a basic theoretical framework of fractional Jacobi last multiplier method, and provides a general method of fractional dynamics.
Similar content being viewed by others
References
Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1979)
Jacobi, C.G.J.: Vorlesungen über Dynamik, Nebst fünf hinterlassenen Abhandlungen desselben herausgegeben von A Clebsch. Druck und Verlag von Georg Reimer, Berlin (1886)
Jacobi, C.G.J.: Sur un noveau principe de la mecanique analytique. Comptes Rendus du Acad’emie des Sciences de Paris 15, 202–205 (1842)
Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge (1904)
Luo, S.K., Zhang, Y.F.: Advances in the Study of Dynamics of Constrained System. Science Press, Beijing (2008)
Luo, S.K., Li, L.: Fractional generalized Hamiltonian mechanics and Poisson conservation law in terms of combined Riesz derivatives. Nonlinear Dyn. 73, 639–647 (2013)
Luo, S.K., Xu, Y.L.: Fractional Lorentz–Dirac model and its dynamical behaviors. Int. J. Theor. Phys. 54, 572–581 (2015)
Noether, A.E.: Invariante Variationsprobleme. Nachr. Akad. Wiss. Göttingen. Math. Phys. 2, 235–237 (1918)
Wang, P.: Perturbation to symmetry and adiabatic invariants of discrete nonholonomic nonconservative mechanical system. Nonlinear Dyn. 68, 53–62 (2012)
Luo, S.K.: Generalized Noether theorem of nonholonomic nonpotential system in noninertial reference frames. Appl. Math. Mech. 12, 927–934 (1991)
Lutzky, M.: Dynamical symmetries and conserved quantities. J. Phys. A Math. Gen. 12, 973–981 (1979)
Hojman, S.A.: A new conservation law constructed without using either Lagrangians or Hamiltonians. J. Phys. A Math. Gen. 25, 291–295 (1992)
Chen, X.W., Li, Y.M., Zhao, Y.H.: Lie symmetries, perturbation to symmetries and adiabatic invariants of Lagrange system. Phys. Lett. A 337, 274–278 (2005)
Luo, S.K., Li, Z.J., Li, L.: A new Lie symmetrical method of finding a conserved quantity for a dynamical system in phase space. Acta Mech. 223, 2621–2632 (2012)
Li, Z.J., Jiang, W.A., Luo, S.K.: Lie symmetries, symmetrical perturbation and a new adiabatic invariant for disturbed nonholonomic systems. Nonlinear Dyn. 67, 445–455 (2012)
Jiang, W.A., Li, L., Li, Z.J., Luo, S.K.: Lie symmetrical perturbation and adiabatic invariants of non-Noether type for generalized Birkhoffian systems. Nonlinear Dyn. 67, 1075–1081 (2012)
Jia, L.Q., Wang, X.X., Zhang, M.L., Han, Y.L.: Special Mei symmetry and approximate conserved quantity of Appell equations for a weakly nonholonomic system. Nonlinear Dyn. 69, 1807–1812 (2012)
Huang, W.L., Cai, J.L.: Conformal invariance and conserved quantity of Mei symmetry for higher-order nonholonomic system. Acta Mech. 223, 433–440 (2012)
Nucci, M.C., Leach, P.G.L.: An old method of Jacobi to find Lagrangians. J. Nonlinear Math. Phys. 16, 431–441 (2009)
Guha, P., Choudhury, A.G.: Hamiltonization of higher-order nonlinear ordinary differential equations and the Jacobi last multiplier. Acta Appl. Math. 116, 179–197 (2011)
Choudhury, A.G., Guha, P.: Application of Jacobi’s last multiplier for construction of Hamiltonians of certain biological systems. Cent. Eur. J. Phys. 10, 398–404 (2012)
Mei, F.X., Wu, H.B.: The Method of Analytical Mechanics for Differential Equation. Science Press, Beijing (2012)
Lie, S.: Verallgemeinerung und neue Verwandlung, der Jacobischen multiplicator-théorie. Forh. Christiania 255–274 (1874)
Lie, S.: Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. Teubner, Leipzig (1912)
Bianchi, L.: Lezioni sulla teoria dei gruppi continui finiti di trasformazioni. E. Spoerri, Pisa (1918)
Nucci, M.C., Leach, P.G.L.: Jacobi’s last multiplier and the complete symmetry group of the Euler–Poinsot system. J. Nonlinear Math. Phys. 9, 110–121 (2002)
Nucci, M.C.: Jacobi’s last multiplier, Lie symmetries, and hidden linearity: "Goldfishes" galore. Theor. Math. Phys. 151, 851–862 (2007)
Nucci, M.C., Sanchini, G.: Symmetries, Lagrangians and conservation laws of an Easter Island population model. Symmetry 7, 1613–1632 (2015)
D’Ambrosi, G., Nucci, M.C.: Lagrangians for equations of Painlevé type by means of the Jacobi last multiplier. J. Nonlinear Math. Phys. 16, 61–71 (2009)
Nucci, M.C., Levi, D.: \(\lambda \lambda \) mathContainer loading mathjax-symmetries and Jacobi last multiplier. Nonlinear Anal. Real World Appl. 14, 1092–1101 (2013)
Nucci, M.C., Arthurs, A.M.: On the inverse problem of calculus of variations. Proc. R. Soc. Math. Phys. Eng. 466, 2309–2323 (2008)
Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman, New York (1982)
Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)
Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)
Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)
Agrawal, O.P.: Generalized variational problems and Euler–Lagrange equations. Comput. Math. Appl. 59, 1852–1864 (2010)
Agrawal, O.P., Muslih, S.I., Baleanu, D.: Generalized variational calculus in terms of multi-parameters fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, 4756–4767 (2011)
Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann–Liouville fractional derivatives. Nuovo Cimento B 119, 73–79 (2003)
Baleanu, D., Agrawal, O.P.: Fractional Hamilton formalism within Caputo’s derivative. Czechoslov. J. Phys. 56, 1087–1092 (2006)
Almeida, R., Torres, D.F.M.: Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett. 22, 1816–1820 (2009)
Klimek, M.: Fractional sequential mechanics model with symmetric fractional derivatives. Czech. J. Phys. 51, 1348–1354 (2001)
Klimek, M.: Lagrangian and Hamiltonian fractional sequential mechanics. Czechoslov. J. Phys. 52, 1247–1253 (2002)
Cresson, J.: Fractional Embedding of Differential Operators and Lagrangian Systems. IHÉS, Paris (2006)
Tarasov, V.E., Zaslavsky, G.M.: Nonholonomic constraints with fractional derivatives. J. Phys. A Math. Gen. 39, 9797–9815 (2006)
Tarasov, V.E.: Fractional Dynamics. Higher Education Press, Beijing (2010)
Li, L., Luo, S.K.: Fractional generalized Hamiltonian mechanics. Acta Mech. 224, 1757–1771 (2013)
Luo, S.K., Li, L.: Fractional generalized Hamiltonian equations and its integral invariants. Nonlinear Dyn. 73, 339–346 (2011)
Xu, Y.L., Luo, S.K.: Stability for manifolds of equilibrium state of fractional generalized Hamiltonian systems. Nonlinear Dyn. 76, 657–672 (2014)
Luo, S.K., He, J.M., Xu, Y.L.: A new method of dynamical stability, i.e. fractional generalized Hamiltonian method, and its applications. Appl. Math. Comput. 269, 77–86 (2015)
Luo, S.K., He, J.M., Xu, Y.L., Zhang, X.T.: Fractional generalized Hamiltonian method for equilibrium stability of dynamical systems. Appl. Math. Lett. 60, 14–20 (2016)
Luo, S.K., Li, L., Xu, Y.L.: Lie algebraic structure and generalized Poisson conservation law for fractional generalized Hamiltonian systems. Acta Mech. 225, 2653–2666 (2014)
Xu, Y.L., Luo, S.K.: Fractional Nambu dynamics. Acta Mech. 226, 3781–3793 (2015)
Luo, S.K., Xu, Y.L.: Fractional Birkhoffian mechanics. Acta Mech. 226, 829–844 (2015)
He, J.M., Xu, Y.L., Luo, S.K.: Stability for manifolds of equilibrium state of fractional Birkhoffian systems. Acta Mech. 226, 2135–2146 (2015)
Luo, S.K., He, J.M., Xu, Y.L.: Fractional Birkhoffian method for equilibrium stability of dynamical systems. Int. J. Non-Linear Mech. 78, 105–111 (2016)
Pauli, W.: On the Hamiltonian structure of non-local field theories. II Nuovo Cimento 10, 648–667 (1953)
Martin, J.L.: Generalized classical dynamics and the ‘classical analogue’ of Fermi oscillator. Proc. R. A 251, 536–542 (1959)
Jia, L.Q., Zheng, S.W.: Mei symmetry of generalized Hamilton systems with additional terms. Acta Phys. Sin. 55, 3829–3832 (2006)
Luo, S.K., Li, Z.J., Peng, W., Li, L.: A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems. Acta Mech. 224, 71–84 (2013)
Jiang, W.A., Luo, S.K.: Stability for manifolds of equilibrium states of generalized Hamiltonian system. Meccanica 47, 379–383 (2012)
Jiang, W.A., Luo, S.K.: A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems. Nonlinear Dyn. 67, 475–482 (2012)
Buchdahl, H.A.: A relativistic fluid spheres resembling the Emden polytrope of index 5. Astrophys. J. 140, 1512–1518 (1964)
Ciesliński, J.L., Nikiciuk, T.: A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients. J. Phys. A Math. Theor. 43, 175205 (2010)
Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations. Proc. R. Soc. A 461, 2451–2477 (2005)
Nambu, Y.: Generalized Hamiltonian dynamics. Phys. Rev. D 7, 2405–2412 (1973)
Takhtajan, L.: On foundation of the generalized Nambu mechanics. Commun. Math. Phys. 160, 295–315 (1994)
Dito, G., Flato, M., Sternheimer, D., Takhtajan, L.: Deformation quantization and Nambu mechanics. Commun. Math. Phys. 183, 1–22 (1997)
Guha, P.: Applications of Nambu mechanics to systems of hydrodynamical type II. J. Nonlinear Math. Phys. 11, 223–232 (2004)
Birkhoff, G.D.: Dynamical Systems. AMS College Publisher, Providence (1927)
Santilli, R.M.: Foundations of Theoretical Mechanics II. Springer, New York (1983)
Mei, F.X., Shi, R.C., Zhang, Y.F., Wu, H.B.: Dynamics of Birkhoff Systems. Beijing Institute of Technology, Beijing (1996)
Luo, S.K., Chen, X.W., Fu, J.L.: Birkhoff’s equations and geometrical theory of rotational relativistic systems. Chinese Physics 10, 271–276 (2001)
Chen, X.W.: Global Analysis for Birkhoffian Systems. Henan University Press, Kaifeng (2002)
Guo, Y.X., Luo, S.K., Shang, M., Mei, F.X.: Birkhoffian formulations of nonholonomic constrained systems. Rep. Math. Phys. 47, 313–322 (2001)
Duffing, G.: Erzwunge Schwingungen bei veränderlicher Eigenfrequenz. F. Vieweg u. Sohn, Braunschweig (1918)
Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, New York (1995)
Chen, Y.F., Zheng, J.H., Wu, X.Y., Wang, J.: On high-accuracy approximate solution of undamped Duffing equation. Mech. Sci. Technol. Aerosp. Eng. 27, 1591–1594 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Luo, SK., Zhang, XT. & He, JM. A general method of fractional dynamics, i.e., fractional Jacobi last multiplier method, and its applications. Acta Mech 228, 157–174 (2017). https://doi.org/10.1007/s00707-016-1699-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00707-016-1699-x