Skip to main content
Log in

A general method of fractional dynamics, i.e., fractional Jacobi last multiplier method, and its applications

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, we present a general method of finding conserved quantities, i.e., fractional Jacobi last multiplier method, and explore its applications to fractional dynamical system. Based on the definition of Riesz–Riemann–Liouville fractional derivative, we study general fractional dynamical equations, construct its fractional Jacobi last multiplier, and, respectively, give the determining equation and three important properties of the multiplier. And then, we present the fractional Jacobi last multiplier method, which includes three theorems of finding conserved quantities of fractional dynamical systems. Further, in fractional framework, we explore the relation between Lie symmetry and Jacobi last multiplier. Furthermore, the fractional Jacobi last multiplier method is applied to the fractional generalized Hamiltonian system, the complete fractional Hamiltonian system, the standard fractional Hamiltonian system, the fractional Nambu system and the fractional Birkhoffian system, and five corresponding propositions are given. Also by using the fractional Jacobi last multiplier method, we respectively find the conserved quantities of a fractional relativistic Buchdahl model, a fractional Euler–Poinsot model and a fractional Duffing oscillator model. This work constructs a basic theoretical framework of fractional Jacobi last multiplier method, and provides a general method of fractional dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1979)

    Google Scholar 

  2. Jacobi, C.G.J.: Vorlesungen über Dynamik, Nebst fünf hinterlassenen Abhandlungen desselben herausgegeben von A Clebsch. Druck und Verlag von Georg Reimer, Berlin (1886)

    Google Scholar 

  3. Jacobi, C.G.J.: Sur un noveau principe de la mecanique analytique. Comptes Rendus du Acad’emie des Sciences de Paris 15, 202–205 (1842)

    Google Scholar 

  4. Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge (1904)

    MATH  Google Scholar 

  5. Luo, S.K., Zhang, Y.F.: Advances in the Study of Dynamics of Constrained System. Science Press, Beijing (2008)

    Google Scholar 

  6. Luo, S.K., Li, L.: Fractional generalized Hamiltonian mechanics and Poisson conservation law in terms of combined Riesz derivatives. Nonlinear Dyn. 73, 639–647 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Luo, S.K., Xu, Y.L.: Fractional Lorentz–Dirac model and its dynamical behaviors. Int. J. Theor. Phys. 54, 572–581 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Noether, A.E.: Invariante Variationsprobleme. Nachr. Akad. Wiss. Göttingen. Math. Phys. 2, 235–237 (1918)

    Google Scholar 

  9. Wang, P.: Perturbation to symmetry and adiabatic invariants of discrete nonholonomic nonconservative mechanical system. Nonlinear Dyn. 68, 53–62 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Luo, S.K.: Generalized Noether theorem of nonholonomic nonpotential system in noninertial reference frames. Appl. Math. Mech. 12, 927–934 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lutzky, M.: Dynamical symmetries and conserved quantities. J. Phys. A Math. Gen. 12, 973–981 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hojman, S.A.: A new conservation law constructed without using either Lagrangians or Hamiltonians. J. Phys. A Math. Gen. 25, 291–295 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, X.W., Li, Y.M., Zhao, Y.H.: Lie symmetries, perturbation to symmetries and adiabatic invariants of Lagrange system. Phys. Lett. A 337, 274–278 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo, S.K., Li, Z.J., Li, L.: A new Lie symmetrical method of finding a conserved quantity for a dynamical system in phase space. Acta Mech. 223, 2621–2632 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Z.J., Jiang, W.A., Luo, S.K.: Lie symmetries, symmetrical perturbation and a new adiabatic invariant for disturbed nonholonomic systems. Nonlinear Dyn. 67, 445–455 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang, W.A., Li, L., Li, Z.J., Luo, S.K.: Lie symmetrical perturbation and adiabatic invariants of non-Noether type for generalized Birkhoffian systems. Nonlinear Dyn. 67, 1075–1081 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jia, L.Q., Wang, X.X., Zhang, M.L., Han, Y.L.: Special Mei symmetry and approximate conserved quantity of Appell equations for a weakly nonholonomic system. Nonlinear Dyn. 69, 1807–1812 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, W.L., Cai, J.L.: Conformal invariance and conserved quantity of Mei symmetry for higher-order nonholonomic system. Acta Mech. 223, 433–440 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nucci, M.C., Leach, P.G.L.: An old method of Jacobi to find Lagrangians. J. Nonlinear Math. Phys. 16, 431–441 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guha, P., Choudhury, A.G.: Hamiltonization of higher-order nonlinear ordinary differential equations and the Jacobi last multiplier. Acta Appl. Math. 116, 179–197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Choudhury, A.G., Guha, P.: Application of Jacobi’s last multiplier for construction of Hamiltonians of certain biological systems. Cent. Eur. J. Phys. 10, 398–404 (2012)

    Google Scholar 

  22. Mei, F.X., Wu, H.B.: The Method of Analytical Mechanics for Differential Equation. Science Press, Beijing (2012)

    Google Scholar 

  23. Lie, S.: Verallgemeinerung und neue Verwandlung, der Jacobischen multiplicator-théorie. Forh. Christiania 255–274 (1874)

  24. Lie, S.: Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. Teubner, Leipzig (1912)

    MATH  Google Scholar 

  25. Bianchi, L.: Lezioni sulla teoria dei gruppi continui finiti di trasformazioni. E. Spoerri, Pisa (1918)

    MATH  Google Scholar 

  26. Nucci, M.C., Leach, P.G.L.: Jacobi’s last multiplier and the complete symmetry group of the Euler–Poinsot system. J. Nonlinear Math. Phys. 9, 110–121 (2002)

    Article  MathSciNet  Google Scholar 

  27. Nucci, M.C.: Jacobi’s last multiplier, Lie symmetries, and hidden linearity: "Goldfishes" galore. Theor. Math. Phys. 151, 851–862 (2007)

    Article  MATH  Google Scholar 

  28. Nucci, M.C., Sanchini, G.: Symmetries, Lagrangians and conservation laws of an Easter Island population model. Symmetry 7, 1613–1632 (2015)

    Article  MathSciNet  Google Scholar 

  29. D’Ambrosi, G., Nucci, M.C.: Lagrangians for equations of Painlevé type by means of the Jacobi last multiplier. J. Nonlinear Math. Phys. 16, 61–71 (2009)

    Article  MathSciNet  Google Scholar 

  30. Nucci, M.C., Levi, D.: \(\lambda \lambda \) mathContainer loading mathjax-symmetries and Jacobi last multiplier. Nonlinear Anal. Real World Appl. 14, 1092–1101 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nucci, M.C., Arthurs, A.M.: On the inverse problem of calculus of variations. Proc. R. Soc. Math. Phys. Eng. 466, 2309–2323 (2008)

    Article  MATH  Google Scholar 

  32. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman, New York (1982)

    MATH  Google Scholar 

  33. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  34. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  35. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Agrawal, O.P.: Generalized variational problems and Euler–Lagrange equations. Comput. Math. Appl. 59, 1852–1864 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Agrawal, O.P., Muslih, S.I., Baleanu, D.: Generalized variational calculus in terms of multi-parameters fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, 4756–4767 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann–Liouville fractional derivatives. Nuovo Cimento B 119, 73–79 (2003)

    Google Scholar 

  39. Baleanu, D., Agrawal, O.P.: Fractional Hamilton formalism within Caputo’s derivative. Czechoslov. J. Phys. 56, 1087–1092 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Almeida, R., Torres, D.F.M.: Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett. 22, 1816–1820 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Klimek, M.: Fractional sequential mechanics model with symmetric fractional derivatives. Czech. J. Phys. 51, 1348–1354 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Klimek, M.: Lagrangian and Hamiltonian fractional sequential mechanics. Czechoslov. J. Phys. 52, 1247–1253 (2002)

    Article  MATH  Google Scholar 

  43. Cresson, J.: Fractional Embedding of Differential Operators and Lagrangian Systems. IHÉS, Paris (2006)

    MATH  Google Scholar 

  44. Tarasov, V.E., Zaslavsky, G.M.: Nonholonomic constraints with fractional derivatives. J. Phys. A Math. Gen. 39, 9797–9815 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tarasov, V.E.: Fractional Dynamics. Higher Education Press, Beijing (2010)

    Book  MATH  Google Scholar 

  46. Li, L., Luo, S.K.: Fractional generalized Hamiltonian mechanics. Acta Mech. 224, 1757–1771 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Luo, S.K., Li, L.: Fractional generalized Hamiltonian equations and its integral invariants. Nonlinear Dyn. 73, 339–346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xu, Y.L., Luo, S.K.: Stability for manifolds of equilibrium state of fractional generalized Hamiltonian systems. Nonlinear Dyn. 76, 657–672 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Luo, S.K., He, J.M., Xu, Y.L.: A new method of dynamical stability, i.e. fractional generalized Hamiltonian method, and its applications. Appl. Math. Comput. 269, 77–86 (2015)

    MathSciNet  Google Scholar 

  50. Luo, S.K., He, J.M., Xu, Y.L., Zhang, X.T.: Fractional generalized Hamiltonian method for equilibrium stability of dynamical systems. Appl. Math. Lett. 60, 14–20 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Luo, S.K., Li, L., Xu, Y.L.: Lie algebraic structure and generalized Poisson conservation law for fractional generalized Hamiltonian systems. Acta Mech. 225, 2653–2666 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Xu, Y.L., Luo, S.K.: Fractional Nambu dynamics. Acta Mech. 226, 3781–3793 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Luo, S.K., Xu, Y.L.: Fractional Birkhoffian mechanics. Acta Mech. 226, 829–844 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. He, J.M., Xu, Y.L., Luo, S.K.: Stability for manifolds of equilibrium state of fractional Birkhoffian systems. Acta Mech. 226, 2135–2146 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Luo, S.K., He, J.M., Xu, Y.L.: Fractional Birkhoffian method for equilibrium stability of dynamical systems. Int. J. Non-Linear Mech. 78, 105–111 (2016)

    Article  Google Scholar 

  56. Pauli, W.: On the Hamiltonian structure of non-local field theories. II Nuovo Cimento 10, 648–667 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  57. Martin, J.L.: Generalized classical dynamics and the ‘classical analogue’ of Fermi oscillator. Proc. R. A 251, 536–542 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  58. Jia, L.Q., Zheng, S.W.: Mei symmetry of generalized Hamilton systems with additional terms. Acta Phys. Sin. 55, 3829–3832 (2006)

    MathSciNet  MATH  Google Scholar 

  59. Luo, S.K., Li, Z.J., Peng, W., Li, L.: A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems. Acta Mech. 224, 71–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Jiang, W.A., Luo, S.K.: Stability for manifolds of equilibrium states of generalized Hamiltonian system. Meccanica 47, 379–383 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. Jiang, W.A., Luo, S.K.: A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems. Nonlinear Dyn. 67, 475–482 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Buchdahl, H.A.: A relativistic fluid spheres resembling the Emden polytrope of index 5. Astrophys. J. 140, 1512–1518 (1964)

    Article  MathSciNet  Google Scholar 

  63. Ciesliński, J.L., Nikiciuk, T.: A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients. J. Phys. A Math. Theor. 43, 175205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  64. Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations. Proc. R. Soc. A 461, 2451–2477 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  65. Nambu, Y.: Generalized Hamiltonian dynamics. Phys. Rev. D 7, 2405–2412 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  66. Takhtajan, L.: On foundation of the generalized Nambu mechanics. Commun. Math. Phys. 160, 295–315 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  67. Dito, G., Flato, M., Sternheimer, D., Takhtajan, L.: Deformation quantization and Nambu mechanics. Commun. Math. Phys. 183, 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  68. Guha, P.: Applications of Nambu mechanics to systems of hydrodynamical type II. J. Nonlinear Math. Phys. 11, 223–232 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  69. Birkhoff, G.D.: Dynamical Systems. AMS College Publisher, Providence (1927)

    Book  MATH  Google Scholar 

  70. Santilli, R.M.: Foundations of Theoretical Mechanics II. Springer, New York (1983)

    Book  MATH  Google Scholar 

  71. Mei, F.X., Shi, R.C., Zhang, Y.F., Wu, H.B.: Dynamics of Birkhoff Systems. Beijing Institute of Technology, Beijing (1996)

    Google Scholar 

  72. Luo, S.K., Chen, X.W., Fu, J.L.: Birkhoff’s equations and geometrical theory of rotational relativistic systems. Chinese Physics 10, 271–276 (2001)

    Article  Google Scholar 

  73. Chen, X.W.: Global Analysis for Birkhoffian Systems. Henan University Press, Kaifeng (2002)

    Google Scholar 

  74. Guo, Y.X., Luo, S.K., Shang, M., Mei, F.X.: Birkhoffian formulations of nonholonomic constrained systems. Rep. Math. Phys. 47, 313–322 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  75. Duffing, G.: Erzwunge Schwingungen bei veränderlicher Eigenfrequenz. F. Vieweg u. Sohn, Braunschweig (1918)

    MATH  Google Scholar 

  76. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  77. Chen, Y.F., Zheng, J.H., Wu, X.Y., Wang, J.: On high-accuracy approximate solution of undamped Duffing equation. Mech. Sci. Technol. Aerosp. Eng. 27, 1591–1594 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Kai Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, SK., Zhang, XT. & He, JM. A general method of fractional dynamics, i.e., fractional Jacobi last multiplier method, and its applications. Acta Mech 228, 157–174 (2017). https://doi.org/10.1007/s00707-016-1699-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1699-x

Navigation