Skip to main content
Log in

Cavitation analysis of spherical shock wave evolution in concrete medium

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper investigates the dynamic spherical cavity expansion of shock wave evolution in concrete medium described by compressible Drucker–Prager plasticity with locked hydrostat. Hugoniot jumping conditions across shock waves are fully accounted for and a complete description of the motion and stress distribution evolution is obtained for different response domains. By solving the dimensionless governing differential equations during different periods, numerical illustrations are then developed with application to an explosion scenario inside an infinite concrete medium. The parameter study indicates that the equivalent charge weight of TNT proportionally affects the shock waves evolution, while the standoff distance has an inversely proportional impact on the ultimate locked/compacted boundary area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczel, A.D.: Fermat’s Last Theorem. Dell Publishing, New York (1997)

    Google Scholar 

  2. Annamalai, S., Parmar, M.K., Ling, Y., Balachandar, S.: Nonlinear Rayleigh-Taylor instability of a cylindrical interface in explosion flows. J. Fluids Eng. 136(6), 060,910 (2014)

    Article  Google Scholar 

  3. Babadjian, J.F., Francfort, G.A., Mora, M.G.: Quasi-static evolution in nonassociative plasticity: the cap model. SIAM J. Math. Anal. 44(1), 245–292 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barclay, D.: Shock front analysis for axial shear wave propagation in a hyperelastic incompressible solid. Acta Mech. 133(1–4), 105–129 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barclay, D.: Shock calculations for axially symmetric shear wave propagation in a hyperelastic incompressible solid. Int. J. Non-Linear Mech. 39(1), 101–121 (2004)

    Article  MATH  Google Scholar 

  6. Bishop, R., Hill, R., Mott, N.: The theory of indentation and hardness tests. Proc. Phys. Soc. 57(3), 147 (1945)

    Article  Google Scholar 

  7. Buchely, M., Maranon, A.: An engineering model for the penetration of a rigid-rod into a Cowper-Symonds low-strength material. Acta Mech. 226(9), 2999–3010 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caverzan, A., Cadoni, E., Di Prisco, M.: Tensile behaviour of high performance fibre-reinforced cementitious composites at high strain rates. Int. J. Impact Eng. 45, 28–38 (2012)

    Article  Google Scholar 

  9. Cazacu, O., Ionescu, I.R.: Compressible rigid viscoplastic fluids. J. Mech. Phys. Solids 54(8), 1640–1667 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cleja-Tigoiu, S., Cazacu, O., Tigoiu, V.: Dynamic expansion of a spherical cavity within a rate-dependent compressible porous material. Int. J. Plast. 24(5), 775–803 (2008)

    Article  MATH  Google Scholar 

  11. Courant, R., Hilbert, D.: Methods of mathematical physics, vol. I. Phys. Today 7(5), 17–17 (2009)

    Article  Google Scholar 

  12. Cristescu, N.: Dynamic Plasticity, vol. 10. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  13. Drucker, D.C.: Limit analysis of two and three dimensional soil mechanics problems. J. Mech. Phys. Solids 1(4), 217–226 (1953)

    Article  Google Scholar 

  14. Durban, D., Fleck, N.A.: Spherical cavity expansion in a Drucker-Prager solid. J. Appl. Mech. 64(4), 743–750 (1997)

    Article  MATH  Google Scholar 

  15. Feng, J., Li, W., Wang, X., Song, M., Ren, H., Li, W.: Dynamic spherical cavity expansion analysis of rate-dependent concrete material with scale effect. Int. J. Impact Eng. 84, 24–37 (2015)

    Article  Google Scholar 

  16. Feng, J., Sun, W., Liu, Z., Cui, C., Wang, X.: An armour-piercing projectile penetration in a double-layered target of ultra-high-performance fiber reinforced concrete and armour steel: Experimental and numerical analyses. Mater. Des. 102, 131–141 (2016)

    Google Scholar 

  17. Foglar, M., Kovar, M.: Conclusions from experimental testing of blast resistance of FRC and RC bridge decks. Int. J. Impact Eng. 59, 18–28 (2013)

    Article  Google Scholar 

  18. Forrestal, M., Luk, V.: Dynamic spherical cavity-expansion in a compressible elastic-plastic solid. J. Appl. Mech. 55(2), 275–279 (1988)

    Article  Google Scholar 

  19. Forrestal, M., Tzou, D.: A spherical cavity-expansion penetration model for concrete targets. Int. J. Solids Struct. 34(31), 4127–4146 (1997)

    Article  MATH  Google Scholar 

  20. Gebbeken, N., Greulich, S., Pietzsch, A.: Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests. Int. J. Impact Eng. 32(12), 2017–2031 (2006)

    Article  Google Scholar 

  21. Gupta, P., Banthia, N., Yan, C.: Fiber reinforced wet-mix shotcrete under impact. J. Mater. Civ. Eng. 12(1), 81–90 (2000)

    Article  Google Scholar 

  22. Han, L., Elliott, J., Bentham, A., Mills, A., Amidon, G., Hancock, B.: A modified Drucker–Prager cap model for die compaction simulation of pharmaceutical powders. Int. J. Solids Struct. 45(10), 3088–3106 (2008)

    Article  MATH  Google Scholar 

  23. Hanagud, S., Ross, B.: Large deformation, deep penetration theory for a compressible strain-hardening target material. AIAA J. 9(5), 905–911 (1971)

    Article  Google Scholar 

  24. Hanchak, S., Forrestal, M., Young, E., Ehrgott, J.: Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths. Int. J. Impact Eng. 12(1), 1–7 (1992)

    Article  Google Scholar 

  25. Hause, T.: Elastic structural response of anisotropic sandwich plates with a first-order compressible core impacted by a friedlander-type shock loading. Compos. Struct. 94(5), 1634–1645 (2012)

    Article  Google Scholar 

  26. Hyde, D.: Users guide for microcomputer program conwep, application of TM5-855-1, fundamentals of protective design for conventional weapons. Instructional Rep. No. SL-88 1 (1992)

  27. Jenson, D., Unnikrishnan, V.U.: Energy dissipation of nanocomposite based helmets for blast-induced traumatic brain injury mitigation. Compos. Struct. 121, 211–216 (2015)

    Article  Google Scholar 

  28. Kennedy, T., Puttapitukporn, T., Kassner, M.: Dynamic effects on cavitation instabilities in solids. Acta Mech. 165(1–2), 73–85 (2003)

    Article  MATH  Google Scholar 

  29. Kingery, C.N., Bulmash, G.: Airblast parameters from TNT spherical air burst and hemispherical surface burst. ARBRL-TR-02555, US Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, (1984)

  30. Luk, V., Forrestal, M.: Penetration into semi-infinite reinforced-concrete targets with spherical and ogival nose projectiles. Int. J. Impact Eng. 6(4), 291–301 (1987)

    Article  Google Scholar 

  31. Masri, R., Durban, D.: Dynamic cylindrical cavity expansion in an incompressible elastoplastic medium. Acta Mech. 181(1–2), 105–123 (2006)

    Article  MATH  Google Scholar 

  32. Masri, R., Durban, D.: Cylindrical cavity expansion in compressible mises and tresca solids. Eur. J. Mech. A-Solid. 26(4), 712–727 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mathews, J.H., Fink, K.D.: Numerical Methods Using MATLAB, vol. 31. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  34. Nowacki, W., Raniecki, B.: Theoretical and numerical analysis of dynamic compacting of soil around a spherical source of explosion. Comput. Struct. 44(1), 381–387 (1992)

    Article  MATH  Google Scholar 

  35. Ožbolt, J., Bošnjak, J., Sola, E.: Dynamic fracture of concrete compact tension specimen: experimental and numerical study. Int. J. Solids Struct. 50(25), 4270–4278 (2013)

    Article  Google Scholar 

  36. Ožbolt, J., Sharma, A.: Numerical simulation of dynamic fracture of concrete through uniaxial tension and L-specimen. Eng. Fract. Mech. 85, 88–102 (2012)

    Article  Google Scholar 

  37. Spranghers, K., Vasilakos, I., Lecompte, D., Sol, H., Vantomme, J.: Numerical simulation and experimental validation of the dynamic response of aluminum plates under free air explosions. Int. J. Impact Eng. 54, 83–95 (2013)

    Article  Google Scholar 

  38. Taylor, G.: The formation of a blast wave by a very intense explosion. i. Theoretical discussion. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pp. 159–174. (1950)

  39. Taylor, G.: The formation of a blast wave by a very intense explosion. ii. The atomic explosion of 1945. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 201, pp. 175–186. The Royal Society (1950)

  40. Warren, T., Forquin, P.: Penetration of common ordinary strength water saturated concrete targets by rigid ogive-nosed steel projectiles. Int. J. Impact Eng. 90, 37–45 (2016)

    Article  Google Scholar 

  41. Warren, T.L.: The effect of target inertia on the penetration of aluminum targets by rigid ogive-nosed long rods. Int. J. Impact Eng. 91, 6–13 (2015)

    Article  Google Scholar 

  42. Whisler, D., Kim, H.: A non-explosive test method for generating wide area dynamic blast-type pressure pulse loading on armored panels. Int. J. Impact Eng. 68, 28–40 (2014)

    Article  Google Scholar 

  43. Zakrisson, B., Wikman, B., Häggblad, H.Å.: Numerical simulations of blast loads and structural deformation from near-field explosions in air. Int. J. Impact Eng. 38(7), 597–612 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. B. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Li, W.B., Pan, G.W. et al. Cavitation analysis of spherical shock wave evolution in concrete medium. Acta Mech 228, 401–414 (2017). https://doi.org/10.1007/s00707-016-1698-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1698-y

Navigation