Skip to main content
Log in

Free transverse vibration of double-walled carbon nanotubes embedded in viscoelastic medium

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper aims to study the vibration characteristics of viscoelastic double-walled carbon nanotubes embedded in a viscoelastic medium. In doing this, the governing equations of the system are derived by combining the Euler–Bernoulli beam theory, nonlocal viscoelastic model and Kelvin viscoelastic foundation model. Subsequently, the transfer function method is employed to solve the governing equations, which enables one to obtain the natural frequencies and the corresponding mode shapes in closed form for the DWCNTs with arbitrary boundary conditions. Here, the developed mechanics model is first compared with the existing techniques available in the literature, where excellent agreement is achieved. Also, a detailed parametric study is conducted to examine the effect of boundary conditions, nonlocal parameter, relaxation time, slenderness ratio, stiffness coefficient and damping coefficient on the vibration response of the DWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Wang, H., Dong, K., Men, F., Yan, Y.J., Wang, X.: Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix. Appl. Math. Model. 34, 878–889 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang, L., Lue, J.T.: Magnetic properties of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 9, 1956–1963 (2009)

    Article  Google Scholar 

  4. Sebastiani, D., Kudin, K.N.: Electronic response properties of carbon nanotubes in magnetic field. ASC Nano 2(4), 661–668 (2008)

    Article  Google Scholar 

  5. Young, K.K., JianXin, G., Se-Gyu, J.: Enhanced field emission of an electric field assisted singwalled carbon nanotube assembly in colloid interstices. Carbon 47, 1555–1560 (2009)

    Article  Google Scholar 

  6. Tae-Won, I., Young, G.J.: Enhanced electrical conductivity, mechanical modulus, and thermal stability of immiscible polylactide/polypropylene blends by the selective localization of multi-walled carbon nanotubes. Compos. Sci. Technol. 103, 78–84 (2014)

    Article  Google Scholar 

  7. Chang, T.P.: Thermal-mechanical vibration and instability of a fluid-conveying single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Appl. Math. Model. 36, 1964–1973 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Azrar, A., Azrar, L., Aljinaidi, A.A.: Numerical modeling of dynamic and parametric instabilities of single-walled carbon nanotubes conveying pulsating and viscous fluid. Compos. Struct. 125, 127–143 (2015)

    Article  Google Scholar 

  9. Chung, D.S., Lee, S.H., Choi, H.W.: Carbon nanotube electron emitters with a gated structure using backside exposure processes. Appl. Phys. Lett. 80, 4045–4047 (2002)

    Article  Google Scholar 

  10. Calvert, P.: Nanotube composites: a recipe for strength. Nature 399, 210–211 (1999)

    Article  Google Scholar 

  11. Gibson, R.F., Ayorinde, E.O., Wen, Y.F.: Vibrations of carbon nanotubes and their composites: a review. ScienceDirect 67, 1–28 (2007)

    Google Scholar 

  12. Tans, S.J., Verschueren, A.R.M., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998)

    Article  Google Scholar 

  13. Sawano, S., Arie, T., Akita, S.: Carbon nanotube resonator in liquid. Nano Lett. 10, 3395–3398 (2010)

    Article  Google Scholar 

  14. Wang, C.M., Zhang, Y.Y., He, X.Q.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18, 105401 (2007)

    Article  Google Scholar 

  15. Murmu, T., McCarthy, M.A., Adhikari, S.: Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: a nonlocal elasticity approach. J. Sound Vibr. 331, 5069–5086 (2012)

    Article  Google Scholar 

  16. Bellucci, S., Gonzalez, J., Guinea, F., Onoato, P., Perfetto, E.: Magnetic field effects in carbon nanotubes. J. Phys. Condens. Matter 19, 395017 (2007)

    Article  Google Scholar 

  17. Zhang, Z.H., Guo, W.L., Guo, Y.F.: The effects of axial magnetic field on electronic properties of carbon nanotubes. Acta Phys. Sin. 55(12), 6526–6531 (2006)

    Google Scholar 

  18. Friswell, M.I., Adhikari, S., Lei, Y.: Non-local finite element analysis of damped beams. Int. J. Solids Struct. 44, 7564–7576 (2007)

    Article  MATH  Google Scholar 

  19. Firouz-Abadi, R.D., Hojjati, M., Rahmanian, M.: Free vibrations of single walled carbon peapods. Phys. E 56, 410–413 (2014)

    Article  Google Scholar 

  20. Kiani, K.: A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect. Int. J. Mech. Sci. 52, 1343–1356 (2010)

    Article  MathSciNet  Google Scholar 

  21. Cooper, C.A., Young, R.J., Halsall, M.: Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos. Part A 32, 401–411 (2001)

    Article  Google Scholar 

  22. Borbón, F., Ambrosini, D.: On the influence of van der Waals coefficient on the transverse vibration of double walled carbon nanotubes. Compos. Mater. Sci. 65, 504–508 (2012)

    Article  Google Scholar 

  23. Li, X., Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11–36 (2002)

    Article  Google Scholar 

  24. Ranjbartoreh, A.R., Wang, G.: Molecular dynamic investigation of mechanical properties of armchair and zigzag double-walled carbon nanotubes under various loading conditions. Phys. Lett. A 374(7), 969–974 (2010)

    Article  Google Scholar 

  25. Adhikari, S., Gilchrist, D., Murmu, T., McCarthy, M.A.: Nonlocal normal modes in nanoscale dynamical systems. Mech. Syst. Signal Process. 60–61, 583–603 (2015)

    Article  Google Scholar 

  26. Ke, L.L., Xiang, Y., Yang, J., Kitipornchai, S.: Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comput. Mater. Sci. 47, 409–417 (2009)

    Article  Google Scholar 

  27. Lei, Y., Adhikari, S., Murmu, T., Friswell, M.I.: Asymptotic frequencies of various damped nonlocal beams and plates. Mech. Res. Commun. 62, 94–101 (2014)

    Article  Google Scholar 

  28. Ajay, M., Anand, Y.J.: Vibration analysis of double wall carbon nanotube based resonators for zeptogram level mass recognition. Compos. Mater. Sci. 79, 203–238 (2013)

    Google Scholar 

  29. Ansari, R., Ajori, S., Arash, B.: Vibrations of single- and double-walled carbon nanotubes with layerwise boundary conditions: a molecular dynamics study. Curr. Appl. Phys. 12, 707–711 (2012)

    Article  Google Scholar 

  30. Yoon, J., Ru, C.Q., Mioduchowski, A.: Vibration of an embedded multiwall carbon nanotube. Compos. Sci. Technol. 63, 1533–1542 (2003)

    Article  Google Scholar 

  31. Xu, K.Y., Guo, X.N.: Vibration a double-walled carbon nanotube aroused by nonlinear intertube van der Waals forces. J. Appl. Phys. 99, 064303 (2006)

    Article  Google Scholar 

  32. Wang, C.M., Tan, V.B.C., Zhang, Y.Y.: Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J. Sound Vibr. 294, 1060–1072 (2006)

    Article  Google Scholar 

  33. Xu, K.Y., Alnefaie, K.A., Abu-Hamdeh, N.H., Almitani, K.H., Aifantis, E.C.: Free transverse vibrations of a double-walled carbon nanotube: gradient and internal inertia effects. Acta Mech. Solida Sin. 27(4), 345–352 (2014)

    Article  Google Scholar 

  34. Ke, L.L., Wang, Y.S.: Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory. Phys. E 43, 1031–1039 (2011)

    Article  Google Scholar 

  35. Eringen, A.C.: On differential equations of nonlocal elasticity and solution of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  Google Scholar 

  36. Eringen, A.C.: Theory of nonlocal pasticity. Int. J. Eng. Sci. 21, 741–751 (1983)

    Article  MATH  Google Scholar 

  37. Eringen, A.C.: A unified continuum theory of electrodynamics of liquid crystals. Int. J. Eng. Sci. 35, 1137–1157 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  39. Lei, X.W., Natsuki, T., Shi, J.X., Ni, Q.Q.: Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Compos. Part B 43, 64–69 (2012)

    Article  Google Scholar 

  40. Ansari, R., Rouhi, H., Sahmani, S.: Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int. J. Mech. Sci. 53, 786–792 (2011)

    Article  Google Scholar 

  41. Khosrozadeh, A., Hajabasi, M.A.: Free vibration of embedded double-walled carbon nanotubes considering nonlinear interlayer van der Waals forces. Appl. Math. Model. 36, 997–1007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kiani, K.: A nonlocal meshless solution for flexural vibrations of double-walled carbon nanotubes. Appl. Math. Comput. 234, 557–578 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Kiani, K.: Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subjected to axial load using nonlocal shear deformable beam theories. Int. J. Mech. Sci. 68, 16–34 (2013)

    Article  Google Scholar 

  44. Thamviratnam, D., Zhuge, Y.: Free vibration analysis of beams on elastic foundation. Comput. Struct. 60, 971–980 (1996)

    Article  MATH  Google Scholar 

  45. Fotouhi, M.M., Firouz-Abadi, R.D., Haddadpour, H.: Free vibration analysis of nanocones embedded in an elastic medium using a nonlocal continuum shell model. Int. J. Eng. Sci. 64, 14–22 (2013)

    Article  MathSciNet  Google Scholar 

  46. Lei, Y.: Finite element analysis of beams with nonlocal foundations. Paper presented at the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conferrence, Newport, Rhode Island

  47. Friswell, M.I., Adhikari, S., Lei, Y.: Vibration analysis of beams with non-local foundations using the finite element method. Int. J. Numer. Methods Eng. 71(11), 1365–1386 (2007)

    Article  MATH  Google Scholar 

  48. Fu, Y.M., Hong, J.W., Wang, X.Q.: Analysis of nonlinear vibration for embedded carbon nanotubes. J. Sound Vibr. 296, 746–756 (2006)

    Article  Google Scholar 

  49. Mahdavi, M.H., Jiang, L.Y., Sun, X.: Nonlinear vibration of a double-walled carbon nanotube embedded in a polymer matrix. Phys. E 43, 1813–1819 (2011)

    Article  Google Scholar 

  50. Ansari, R., Hemmatnezhad, M.: Nonlinear vibrations of embedded multi-walled carbon nanotubes using a variational approach. Math. Comput. Model. 53, 927–938 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Fang, B., Zhen, Y.X., Zhang, C.P., Tang, Y.: Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory. Appl. Math. Model. 37, 1096–1107 (2013)

    Article  MathSciNet  Google Scholar 

  52. Sun, C., Liu, K.: Dynamic torsional buckling of a double-walled carbon nanotube embedded in an elastic medium. Eur. J. Mech. A/Solids 27, 40–49 (2008)

    Article  MATH  Google Scholar 

  53. Natsuki, T., Lei, X.W., Ni, Q.Q., Endo, M.: Free vibration characteristics of double-walled carbon nanotubes embedded in an elastic medium. Phys. Lett. A 374, 2670–2674 (2010)

    Article  MATH  Google Scholar 

  54. Kazemi-Lari, M.A., Fazelzadeh, S.A., Ghavanloo, E.: Non-conservative instability of cantilever carbon nanotubes resting on viscoelastic foundation. Phys. E 44, 1623–1630 (2012)

    Article  Google Scholar 

  55. Raju, A.P.A., Lewis, A., Derby, B., Young, R.J.: Wide-area strain sensors based upon graphene–polymer composite coatings probed by Raman spectroscopy. Mater. Views 24, 2865–2874 (2014)

    Google Scholar 

  56. Soltani, P., Taherian, M.M., Farshidianfar, A.: Vibration and instability of a viscous-fluid-conveying single-walled carbon nanotube embedded in a visco-elastic medium. J. Phys. D Appl. Phys. 43, 425401 (2010)

    Article  Google Scholar 

  57. Lei, Y., Murmu, T., Adhikari, S., Friswell, M.I.: Dynamic characteristics of damped viscoelastic nonlocal Euler–Bernoulli beams. Eur. J. Mech. A/Solids 42, 125–136 (2013)

    Article  MathSciNet  Google Scholar 

  58. Lei, Y., Adhikari, S., Friswell, M.I.: Vibration of nonlocal Kelvin–Voigt viscoelastic damped Timoshenko beams. Int. J. Eng. Sci. 66–67, 1–13 (2013)

    Article  MathSciNet  Google Scholar 

  59. Cigeroglu, E., Samandari, H.: Nonlinear free vibration of double walled carbon nanotubes by using describing function method with multiple trial functions. Phys. E 46, 160–173 (2012)

    Article  Google Scholar 

  60. Chowdhury, R., Wang, C.Y., Adhikari, S.: Low frequency vibration of multiwall carbon nanotubes with heterogeneous boundaries. J. Phys. D Appl. Phys. 43, 085405 (2010)

    Article  Google Scholar 

  61. Yang, B., Tan, C.A.: Transfer functions of one-dimensional distributed parameter system. Transl. ASME J. Appl. Mech. 59(4), 1009–1014 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  62. Shen, Z.B., Li, X.F., Sheng, L.P., Tang, G.J.: Transverse vibration of nanotube-based micro-mass sensor via nonlocal Timoshenko beam theory. Comput. Mater. Sci. 53, 340–346 (2012)

    Article  Google Scholar 

  63. Shen, Z.B., Tang, G.J., Zhang, L., Li, X.F.: Vibration of double-walled carbon nanotube based nanomechanical sensor with initial axial stress. Comput. Mater. Sci. 58, 51–58 (2012)

    Article  Google Scholar 

  64. Lu, P., Lee, H.P., Lu, C., Zhang, P.Q.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99, 073510 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D.P., Lei, Y. & Shen, Z.B. Free transverse vibration of double-walled carbon nanotubes embedded in viscoelastic medium. Acta Mech 227, 3657–3670 (2016). https://doi.org/10.1007/s00707-016-1686-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1686-2

Navigation