Skip to main content
Log in

Elastic buckling of current-carrying double-nanowire systems immersed in a magnetic field

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Axial buckling analysis of magnetically affected double-nanowire systems carrying electric current is of high interest. Using Lorentz and Biot–Savart laws, the magnetic forces on each nanowire are appropriately evaluated. By employing Timoshenko and higher-order beam theories, the governing equations of the nanosystem are extracted in the context of the surface elasticity theory of Gurtin–Murdoch. By applying a meshless technique, the critical buckling load of the nanosystem is calculated. In a particular case, the predicted results by the suggested numerical methodology are also verified with those of the assumed mode method, and a reasonably good agreement is achieved. The influences of the electric current, magnetic field strength, interwire distance, and surface energy effect on the buckling behavior of the nanosystem are examined. The capability of the Timoshenko beam theory in capturing the predicted results by the higher-order beam theory is also explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Article  Google Scholar 

  2. Wang, X., Song, J., Liu, J., Wang, Z.L.: Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)

    Article  Google Scholar 

  3. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gurtin, M.E., Murdoch, A.I.: Effect of surface stress on wave propagation in solids. J. Appl. Phys. 47, 4414–4421 (1976)

    Article  Google Scholar 

  5. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  6. He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008)

    Article  Google Scholar 

  7. Liu, C., Rajapakse, R.K.N.D.: Continuum models incorporating surface energy for static and dynamic response of nanoscale beams. IEEE Trans. Nanotechnol. 9, 422–431 (2010)

    Article  Google Scholar 

  8. Jiang, L.Y., Yan, Z.: Timoshenko beam model for static bending of nanowires with surface effects. Phys. E 42, 2274–2279 (2010)

    Article  Google Scholar 

  9. Ansari, R., Sahmani, S.: Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. Int. J. Eng. Sci. 49, 1244–1255 (2011)

    Article  MathSciNet  Google Scholar 

  10. Zhang, G.Y., Gao, X.L., Wang, J.Z.: A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effects. Acta Mech. 226, 4073–4085 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, G.F., Feng, X.Q., Yu, S.W.: Surface buckling of a bending microbeam due to surface elasticity. Europhys. Lett. 77, 44002 (2007)

    Article  Google Scholar 

  12. Wang, G.F., Feng, X.Q.: Surface effects on buckling of nanowires under uniaxial compression. Appl. Phys. Lett. 94, 141913 (2009)

    Article  Google Scholar 

  13. Wang, G.F., Feng, X.Q.: Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. Europhys. Lett. 91, 56007 (2010)

    Article  Google Scholar 

  14. Yan, Z., Jiang, L.Y.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22, 245703 (2011)

    Article  Google Scholar 

  15. Li, Y., Song, J., Fang, B., Zhang, J.: Surface effects on the postbuckling of nanowires. J. Phys. D Appl. Phys. 44, 425304 (2011)

    Article  Google Scholar 

  16. Wang, K.F., Wang, B.L.: Combining effects of surface energy and non-local elasticity on the buckling of nanoplates. Micro Nano Lett. 6, 941–943 (2011)

    Article  Google Scholar 

  17. Park, H.S.: Surface stress effects on the critical buckling strains of silicon nanowires. Comput. Mater. Sci. 51, 396–401 (2012)

    Article  Google Scholar 

  18. Zhang, J., Wang, C., Adhikari, S.: Surface effect on the buckling of piezoelectric nanofilms. J. Phys. D Appl. Phys. 45, 285301 (2012)

    Article  Google Scholar 

  19. Yan, Z., Jiang, L.Y.: Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints. Proc. R. Soc. A Math. Phys. 468, 3458–3475 (2012)

  20. Youcef, D.O., Kaci, A., Houari, M.S.A., Tounsi, A., Benzair, A., Heireche, H.: On the bending and stability of nanowire using various HSDTs. Adv. Nano Res. 3, 177–191 (2015)

    Article  Google Scholar 

  21. Huang, D.W.: Size-dependent response of ultra-thin films with surface effects. Int. J. Solids Struct. 45, 568–579 (2008)

    Article  MATH  Google Scholar 

  22. Gheshlaghi, B., Hasheminejad, S.M.: Surface effects on nonlinear free vibration of nanobeams. Compos. Part B Eng. 42, 934–937 (2011)

    Article  Google Scholar 

  23. Ansari, R., Sahmani, S.: Surface stress effects on the free vibration behavior of nanoplates. Int. J. Eng. Sci. 49, 1204–1215 (2011)

    Article  MathSciNet  Google Scholar 

  24. Eltaher, M.A., Emam, S.A., Mahmoud, F.F.: Free vibration analysis of functionally graded size-dependent nanobeams. Appl. Math. Comput. 218, 7406–7420 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Malekzadeh, P., Shojaee, M.: Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams. Compos. Part B Eng. 52, 84–92 (2013)

    Article  Google Scholar 

  26. Hosseini-Hashemi, S., Nazemnezhad, R.: An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. Part B Eng. 52, 199–206 (2013)

    Article  Google Scholar 

  27. Ansari, R., Mohammadi, V., Shojaei, M.F., Gholami, R., Sahmani, S.: On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory. Compos. Part B Eng. 60, 158–166 (2014)

    Article  Google Scholar 

  28. Song, F., Huang, G.L., Varadan, V.K.: Study of wave propagation in nanowires with surface effects by using a high-order continuum theory. Acta Mech. 209, 129–139 (2010)

    Article  MATH  Google Scholar 

  29. Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Methods Fluids 20, 1081–1106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, W.K., Jun, S., Li, S., Adee, J., Belytschko, T.: Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Methods Eng. 38, 1655–1679 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jun, S., Liu, W.K., Belytschko, T.: Explicit reproducing kernel particle methods for large deformation problems. Int. J. Numer. Methods Eng. 41, 137–166 (1998)

    Article  MATH  Google Scholar 

  32. Liu, W.K., Jun, S., Sihling, D.T., Chen, Y., Hao, W.: Multiresolution reproducing kernel particle method for computational fluid dynamics. Int. J. Numer. Methods Fluids 24, 1391–1415 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, J.S., Yoon, S., Wang, H.P., Liu, W.K.: An improved reproducing kernel particle method for nearly incompressible finite elasticity. Comput. Methods Appl. Mech. 181, 117–145 (2000)

    Article  MATH  Google Scholar 

  34. Zhang, L.T., Wagner, G.J., Liu, W.K.: Modelling and simulation of fluid structure interaction by meshfree and FEM. Commun. Numer. Methods Eng. 19, 615–621 (2003)

    Article  MATH  Google Scholar 

  35. Kiani, K., Ghaffari, H., Mehri, B.: Application of elastically supported single-walled carbon nanotubes for sensing arbitrarily attached nano-objects. Curr. Appl. Phys. 13, 107–120 (2013)

    Article  Google Scholar 

  36. Kiani, K.: Longitudinally varying magnetic field influenced transverse vibration of embedded double-walled carbon nanotubes. Int. J. Mech. Sci. 87, 179–199 (2014)

    Article  Google Scholar 

  37. Kiani, K.: Axial buckling analysis of a slender current-carrying nanowire acted upon by a magnetic field using the surface energy approach. J. Phys. D Appl. Phys. 48, 245302 (2015)

    Article  Google Scholar 

  38. Kiani, K.: Column buckling of magnetically affected stocky nanowires carrying electric current. J. Phys. Chem. Solids 83, 140–151 (2015)

    Article  Google Scholar 

  39. Kiani, K.: Surface effect on free transverse vibrations and dynamic instability of current-carrying nanowires in the presence of a longitudinal magnetic field. Phys. Lett. A 378, 1834–1840 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kiani, K.: Forced vibrations of a current-carrying nanowire in a longitudinal magnetic field accounting for both surface energy and size effects. Phys. E 63, 27–35 (2014)

    Article  Google Scholar 

  41. Kiani, K.: Vibrations and instability of pretensioned current-carrying nanowires acted upon by a suddenly applied three-dimensional magnetic field. Mater. Chem. Phys. 162, 531–541 (2015)

    Article  Google Scholar 

  42. Kiani, K.: Stability and vibrations of doubly parallel current-carrying nanowires immersed in a longitudinal magnetic field. Phys. Lett. A 379, 348–360 (2015)

    Article  Google Scholar 

  43. Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. 41, 744–746 (1921)

    Article  Google Scholar 

  44. Timoshenko, S.P.: On the transverse vibrations of bars of uniform cross-section. Philos. Mag. 43, 12531 (1922)

    Google Scholar 

  45. Wagner, G.J., Liu, W.K.: Application of essential boundary conditions in mesh-free methods: a corrected collocation method. Int. J. Numer. Methods Eng. 47, 1367–1379 (2000)

    Article  MATH  Google Scholar 

  46. Bickford, W.B.: A consistent higher order beam theory. Dev. Theor. Appl. Mech. 11, 137–150 (1982)

    Google Scholar 

  47. Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)

    Article  MATH  Google Scholar 

  48. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A., Bedia, E.A.A.: New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. J. Eng. Mech. 140, 374–383 (2014)

    Article  Google Scholar 

  49. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R., Bég, O.A.: An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos. Part B Eng. 60, 274–283 (2014)

    Article  Google Scholar 

  50. Tounsi, A., Bourada, M., Kaci, A., Houari, M.S.A.: A new simple shear and normal deformations theory for functionally graded beams. Steel Compos. Struct. 18, 409 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Kiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, K. Elastic buckling of current-carrying double-nanowire systems immersed in a magnetic field. Acta Mech 227, 3549–3570 (2016). https://doi.org/10.1007/s00707-016-1679-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1679-1

Navigation