Skip to main content
Log in

A high-performance parametrized mixed finite element model for bending and vibration analyses of thick plates

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on the parametrized mixed variational principle, a high-performance finite element model has been developed for bending and vibration analysis of thick plates. The proposed mixed variational formulation combines the concept of Reissner’s mixed variational theorem and Rong’s generalized mixed variational theorem. In addition to unknown parameters of the displacement fields, the transverse normal component of the stress tensor is also assumed as the independent field variable in the present variational formulation. The latter allows the fulfillment of the boundary conditions of the transverse normal stress at the top and bottom surfaces of the plate in a natural way. The variational constraint of the transverse normal strain–displacement relations is relaxed via the parametrized Lagrange multipliers method. The functional of the proposed variational formulation contains an arbitrary free parameter, called the splitting factor. Simple formulations have been proposed for selecting the splitting factor which leads to the results of higher precision. The numerical results obtained from the proposed mixed formulation have been compared with the results of three-dimensional (3D) theory of elasticity and other plate theories available in the literature. The comparison study shows that the proposed parametrized mixed plate theory is capable of achieving the accuracy of nearly exact 3D solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malik, M., Bert, C.W.: Three-dimensional elasticity solutions for free vibrations of rectangular plates by the differential quadrature method. Int. J. Solids Struct. 35(3–4), 299–318 (1998)

    Article  MATH  Google Scholar 

  2. Wittrick, W.H.: Analytical, three-dimensional elasticity solutions to some plate problems, and some observations on Mindlin’s plate theory. Int. J. Solids Struct. 23(4), 441–64 (1987)

    Article  MATH  Google Scholar 

  3. Leissa, A.W., Zhang, Z.D.: On the three-dimensional vibrations of the cantilevered rectangular parallelepiped. J. Acoust. Soc. Am. 73, 2013–2021 (1983)

    Article  MATH  Google Scholar 

  4. Timoshenko, S.P., Woinowski-Krieger, S.: Theory of Plates and Shells. McGraw-Hill, Singapore (1959)

    Google Scholar 

  5. Liu, Y., Li, R.: Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplectic approach. Appl. Math. Model. 34(4), 856–865 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Leissa, A.W., Kang, J.H.: Exact solutions for vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses. Int. J. Mech. Sci. 44(9), 1925–1945 (2002)

    Article  MATH  Google Scholar 

  7. Zenkour, A.M.: An exact solution for the bending of thin rectangular plates with uniform, linear, and quadratic thickness variations. Int. J. Mech. Sci. 45(2), 295–315 (2003)

    Article  MATH  Google Scholar 

  8. Eisenberger, M., Alexandrov, A.: Buckling loads of variable thickness thin isotropic plates. Thin Walled Struct. 41(9), 871–889 (2003)

    Article  Google Scholar 

  9. Reddy, J.N.: Theory and Analysis of Elastic Plates. Taylor & Francis, Philadelohia (1999)

    Google Scholar 

  10. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12(2), 69–72 (1945)

    MathSciNet  MATH  Google Scholar 

  11. Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18(1), 31–38 (1951)

    MATH  Google Scholar 

  12. Wang, C.M., Lim, G.T., Reddy, J.N., Lee, K.H.: Relationships between bending solutions of Reissner and Mindlin plate theories. Eng. Struct. 23(7), 838–849 (2001)

    Article  Google Scholar 

  13. Zenkour, A.M.: Exact mixed-classical solutions for the bending analysis of shear deformable rectangular plates. Appl. Math. Model. 27(7), 515–534 (2003)

    Article  MATH  Google Scholar 

  14. Hosseini-Hashemi, S., Arsanjani, M.: Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates. Int. J. Solids Struct. 42(3–4), 819–853 (2005)

    Article  MATH  Google Scholar 

  15. Reddy, J.N.: A simple higher order theories for laminated composites plates. J. Appl. Mech. 52, 745–742 (1984)

    Article  MATH  Google Scholar 

  16. Ambartsumian, S.A.: On the theory of bending plates. Izv. Otd. Tech. Nauk. AN SSSR 5, 69–77 (1958)

    MathSciNet  Google Scholar 

  17. Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29(8), 901–916 (1991)

    Article  MATH  Google Scholar 

  18. Lezgy-Nazargah, M., Vidal, P., Polit, O.: An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams. Compos. Struct. 104, 71–84 (2013)

    Article  Google Scholar 

  19. Karama, M., Afaq, K.S., Mistou, S.: A new theory for laminated composite plates. Proc. Inst. Mech. Eng. Des. Appl. 223, 53–62 (2009)

    Article  MATH  Google Scholar 

  20. Lezgy-Nazargah, M., Beheshti-Aval, S.B., Shariyat, M.: A refined mixed global-local finite element model for bending analysis of multi-layered rectangular composite beams with small widths. Thin Walled Struct. 49, 351–362 (2011)

    Article  MATH  Google Scholar 

  21. Beheshti-Aval, S.B., Lezgy-Nazargah, M.: A new coupled refined high-order global-local theory and finite element model for electromechanical response of smart laminated /sandwich beams. Arch. Appl. Mech. 82(12), 1709–1752 (2012)

    Article  MATH  Google Scholar 

  22. Lezgy-Nazargah, M., Beheshti-Aval, S.B.: Coupled refined layerwise theory for dynamic free and forced responses of piezoelectric laminated composite and sandwich beams. Meccanica 48(6), 1479–1500 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Beheshti-Aval, S.B., Shahvaghar-Asl, S., Lezgy-Nazargah, M., Noori, M.: A finite element model based on coupled refined high-order global-local theory for static analysis of electromechanical embedded shear-mode piezoelectric sandwich composite beams with various widths. Thin Walled Struct. 72, 139–163 (2013)

    Article  Google Scholar 

  24. Lezgy-Nazargah, M.: Efficient coupled refined finite element for dynamic analysis of sandwich beams containing embedded shear-mode piezoelectric layers. Mech. Adv. Mater. Struct. (2014). doi:10.1080/15376494.2014.981617

    Google Scholar 

  25. Shimpi, R.P., Patel, H.G.: A two variable refined plate theory for orthotropic plate analysis. Int. J. Solids Struct. 43(22–23), 6783–6799 (2006)

    Article  MATH  Google Scholar 

  26. Thai, H.T., Kim, S.E.: Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates. Int. J. Mech. Sci. 54(1), 269–276 (2012)

    Article  Google Scholar 

  27. Thai, H.T., Kim, S.E.: Levy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory. Appl. Math. Model. 36(8), 3870–3882 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Thai, H.T., Choi, D.H.: Analytical solutions of refined plate theory for bending, buckling and vibration analyses of thick plates. Appl. Math. Model. 37, 8310–8323 (2013)

    Article  MathSciNet  Google Scholar 

  29. Lo, K.H., Christensen, R.M., Wu, E.M.: A higher-order theory of plate deformation. Part 2: laminated plates. J. Appl. Mech. 44, 669–676 (1977)

    Article  MATH  Google Scholar 

  30. Ghugal, Y.M., Sayyad, A.S.: A flexure of thick isotropic plates using trigonometric shear deformation theory. J. Solid Mech. 2(1), 79–90 (2010)

    Google Scholar 

  31. Ghugal, Y.M., Sayyad, A.S.: Free vibration of thick isotropic plates using trigonometric shear deformation theory. J. Solid Mech. 3(2), 172–182 (2011)

    Google Scholar 

  32. Carrera, E., Brischetto, S.: Analysis of thickness locking in classical, refined and mixed multilayered plate theories. Compos. Struct. 82, 549–562 (2008)

    Article  Google Scholar 

  33. Carrera, E., Brischetto, S.: A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates. ASME Appl. Mech. Rev. 62, 010803-1–010803-17 (2009)

    Article  Google Scholar 

  34. Reissner, E.: On a mixed variational theorem and on shear deformable plate theory. Int. J. Numer. Methods Eng. 23, 93–198 (1986)

    Article  MATH  Google Scholar 

  35. Rong, T.Y.: Generalized mixed variational principles and new FEM models in solid mechanics. Int. J. Solids Struct. 24(11), 1131–1140 (1998)

    MathSciNet  MATH  Google Scholar 

  36. Rong, T.Y., Lu, A.Q.: Generalized mixed variational principles and solutions of ill-conditioned problems in computational mechanics, Part I: Volumetric locking. Comput. Methods Appl. Mech. Eng. 191, 407–422 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rong, T.Y., Lu, A.Q.: Generalized mixed variational principles and solutions of ill-conditioned problems in computational mechanics. Part II: shear locking. Comput. Methods Appl. Mech. Eng. 192, 4981–5000 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. De Veubeke, B.F.: Displacement and equilibrium models in the finite element method. In: Zienkiewicz, O.C., Holister, G.S. (eds.) Stress Analysis. Wiley, New York (1965)

    Google Scholar 

  39. Shariyat, M.: A generalized global-local high-order theory for bending and vibration analyses of sandwich plates subjected to thermo-mechanical loads. Int. J. Mech. Sci. 52, 495–514 (2010)

    Article  Google Scholar 

  40. Reddy, J.N.: A refined nonlinear theory of plates with transverse shear deformation. Int. J. Solids Struct. 20(9–10), 881–896 (1984)

    Article  MATH  Google Scholar 

  41. Brischetto, S., Carrera, E.: Advanced mixed theories for bending analysis of functionally graded plates. Comput. Struct. 88, 1474–1483 (2010)

    Article  Google Scholar 

  42. Polit, O., Vidal, P., D’Ottavio, M.: Robust C\(^{0}\) high-order plate finite element for thin to very thick structures: mechanical and thermo-mechanical analysis. Int. J. Numer. Methods Eng. 90, 429–451 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Klinkel, S., Gruttmann, F., Wagner, W.: A continuum based three-dimensional shell element for laminated structures. Comput. Struct. 71, 43–62 (1999)

    Article  Google Scholar 

  44. Polit, O., Touratier, M.: A multilayered/sandwich triangular finite element applied to linear and nonlinear analysis. Comput. Struct. 58(1), 121–128 (2002)

    Article  Google Scholar 

  45. Demasi, L.: \(\infty ^{3}\) plate theories for thick and thin plates: the generalized unified formulation. Comput. Struct. 84, 256–270 (2008)

    Article  Google Scholar 

  46. Hosseini-Hashemi, S., Fadaee, M., Rokni Damavandi Taher, H.: Exact solutions for free flexural vibration of Levy-type rectangular thick plates via third order shear deformation plate theory. Appl. Math. Model. 35(2), 708–727 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhou, D., Lo, S.H., Au, F.T.K., Cheung, Y.K., Liu, W.Q.: 3-D vibration analysis of skew thick plates using Chebyshev–Ritz method. Int. J. Mech. Sci. 48, 1481–1493 (2006)

    Article  MATH  Google Scholar 

  48. Liew, K.M., Xiang, Y., Kitipornchai, S., Wang, C.M.: Vibration of thick skew plates based on Mindlin shear deformation plate theory. J. Sound Vib. 168, 39–69 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lezgy-Nazargah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lezgy-Nazargah, M. A high-performance parametrized mixed finite element model for bending and vibration analyses of thick plates. Acta Mech 227, 3429–3450 (2016). https://doi.org/10.1007/s00707-016-1676-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1676-4

Navigation