Skip to main content
Log in

Strain gradient elasto-plasticity with a new Taylor-based yield function

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

For micron-scale elasto-plastic deformations, a theory of strain gradient elasto-plasticity (SGEP) has been established to explain some phenomena that have recently attracted intensive investigations, which include size effects around the elastic limit and in plastic hardening, the anomalous Bauschinger effect, plastic softening, and the unconventional load–unload hysteresis loops. Based on the fact that for most materials the elastic length scale is far smaller than the plastic length scale, our dimensional analysis reveals that the elastic strain gradient is generally dominant over the plastic strain gradient, which indicates the significant role of elasticity. Therefore, a more rigorous consideration of the elastic deformation is implemented within the proposed SGEP framework, featured by a new Taylor plasticity-based yield function and the elasto-plastic decompositions of both strain and strain gradient. The proposed yield function emphasizes the reversibility of elastic deformation-related dislocations, which has been frequently observed experimentally. This proposed SGEP not only does satisfy the principle of nonnegative plastic dissipation for material hardening, but also allows for the existence of material softening which has been observed in recent experiments. The wire torsion and foil bending problems are used as examples, to validate the SGEP’s capability in interpreting the above-mentioned phenomena by comparison with experimental data in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aifantis, E.: Strain gradient interpretation of size effects. International Journal of Fracture 95, 299–314 (1999)

    Article  Google Scholar 

  2. Bertram, A., Forest, S.: The thermodynamics of gradient elastoplasticity. Continuum Mechanics and Thermodynamics 26, 269–286 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandstetter, S., Swygenhoven, H.V., Petegem, S.V., Schmitt, B., Maaß, R., Derlet, P.M.: From micro- to macroplasticity. Advanced Materials 18, 1545–1548 (2006)

    Article  Google Scholar 

  4. Chakravarthy, S., Curtin, W.: Stress-gradient plasticity. Proceedings of the National Academy of Sciences 108, 15716–15720 (2011)

    Article  Google Scholar 

  5. Chen, S., Wang, T.: A new hardening law for strain gradient plasticity. Acta Materialia 48, 3997–4005 (2000)

    Article  Google Scholar 

  6. Demir, E., Raabe, D.: Mechanical and microstructural single-crystal bauschinger effects: Observation of reversible plasticity in copper during bending. Acta Materialia 58, 6055–6063 (2010)

    Article  Google Scholar 

  7. Depres, C., Robertson, C., Fivel, M.: Low-strain fatigue in alsi 316l steel surface grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles i. dislocation microstructures and mechanical behavior. Philosophical Magazine 84, 2257–2275 (2004)

    Article  Google Scholar 

  8. Dieter, G.: Mechanical metallurgy, 1988, si metric edition. London, Grawhill Book Company (2005)

  9. Drucker, D.: Some implications of work hardening and ideal plasticity. Quarterly of Applied Mathematics 7, 411–418 (1950)

    MathSciNet  MATH  Google Scholar 

  10. Drucker, D.: A more fundamental approach to plastic stress-strain relations. In: Proc. of the First U.S. National Congress of Applied Mechanics, ASME, 487-491, New York (1951)

  11. Dunstan, D., Ehrler, B., Bossis, R., Joly, S., P’ng, K., Bushby, A.: Elastic limit and strain hardening of thin wires in torsion. Physical Review Letters 103, 155501 (2009)

  12. Ehrler, B., Hou, X., Zhu, T., P’ng, K., Walker, C., Bushby, A., Dunstan, D.: Grain size and sample size interact to determine strength in a soft metal. Philosophical Magazine 88, 3043–3050 (2008)

  13. Evans, A., Hutchinson, J.: A critical assessment of theories of strain gradient plasticity. Acta Materialia 57, 1675–1688 (2009)

    Article  Google Scholar 

  14. Fertig, R.S., Baker, S.P.: Simulation of dislocations and strength in thin films: A review. Progress in Materials Science 54, 874–908 (2009)

    Article  Google Scholar 

  15. Fleck, N., Hutchinson, J.: Strain gradient plasticity. Advances in applied mechanics 33, 295–361 (1997)

    Article  MATH  Google Scholar 

  16. Fleck, N., Hutchinson, J.: A reformulation of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 49, 2245–2271 (2001)

    Article  MATH  Google Scholar 

  17. Fleck, N., Hutchinson, J., Willis, J.: Strain gradient plasticity under non-proportional loading. Proceedings of The Royal Society: A 470, 20140267 (2014)

  18. Fleck, N., Muller, G., Ashby, M., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia 42, 475–487 (1994)

    Article  Google Scholar 

  19. Fleck, N., Willis, J.: A mathematical basis for strain-gradient plasticity theory. part ii: Tensorial plastic multiplier. Journal of the Mechanics and Physics of Solids 57, 1045–1057 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Forest, S., Sievert, R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mechanica 160, 71–111 (2003)

    Article  MATH  Google Scholar 

  21. Gao, H., Huang, Y.: Taylor-based nonlocal theory of plasticity. International Journal of Solids and Structures 38, 2615–2637 (2001)

    Article  MATH  Google Scholar 

  22. Gao, H., Huang, Y.: Geometrically necessary dislocation and size-dependent plasticity. Scripta materialia 48, 113–118 (2003)

    Article  Google Scholar 

  23. Gao, H., Huang, Y., Nix, W., Hutchinson, J.: Mechanism-based strain gradient plasticity-i. theory. Journal of the Mechanics and Physics of Solids 47, 1239–1263 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gundmundson, P.: A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 52, 1379–1406 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hutchinson, J.: Plasticity at the micron scale. International Journal of Solids and Structures 37, 225–238 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hutchinson, J.: Generalizing j2 flow theory: Fundamental issues in strain gradient plasticity. Acta Mechanica Sinica 28, 1078–1086 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Idiart, M., Fleck, N.: Size effects in the torsion of thin metal wires. Modelling and Simulation in Material Science and Engineering 18, 015009 (2010)

    Article  Google Scholar 

  28. Kiener, D., Motz, C., Grosinger, W., Weygand, D., Pippan, R.: Cyclic response of copper single crystal micro-beams. Scripta Materialia 63, 500–503 (2010)

    Article  Google Scholar 

  29. Kirchlechner, C., Grosinger, W., Kapp, M., Imrich, P., Micha, J.S., Ulrich, O., Keckes, J., Dehm, G., Motz, C.: Investigation of reversible plasticity in a micron-sized, single crystalline copper bending beam by x-ray klaue diffraction. Philosophical Magazine 92, 3231–3242 (2012)

    Article  Google Scholar 

  30. Lam, D., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  31. Liu, D., He, Y., Dunstan, D., Zhang, B., Gan, Z., Hu, P., Ding, H.: Anomalous plasticity in the cyclic torsion of micron scale metallic wires. Physical Review Letters 110, 244301 (2013)

    Article  Google Scholar 

  32. Liu, D., He, Y., Dunstan, D., Zhang, B., Gan, Z., Hu, P., Ding, H.: Toward a further understanding of size effects in the torsion of thin metal wires: An experimental and theoretical assessment. International Journal of Plasticity 41, 30–52 (2013)

    Article  Google Scholar 

  33. Liu, D., He, Y., Tang, X., Ding, H., Hu, P., Cao, P.: Size effects in the torsion of microscale copper wires:experiment and analysis. Scripta Materialia 66, 406–409 (2012)

    Article  Google Scholar 

  34. Liu, J., Soh, A.: Bridging strain gradient elasticity and plasticity toward general loading histories. Mechanics of Materials 78, 11–21 (2014)

    Article  Google Scholar 

  35. Morrison, J.: The yield of mild steel with particular reference to the effect of size of specimen. Proceedings of the Institute of Mechanical Engineers 142, 193–223 (1939)

    Article  Google Scholar 

  36. Nicola, L., Xiang, Y., Vlassak, J., der Giessen, E.V., Needleman, A.: Plastic deformation of freestanding thin films: Experiments and modeling. Journal of the Mechanics and Physics of Solids 54, 2089–2110 (2006)

    Article  MATH  Google Scholar 

  37. Nix, W., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids 46, 411–425 (1998)

    Article  MATH  Google Scholar 

  38. Richards, C.: Effect of size on the yielding of mild steel beams. Proceedings of the American Society for Testing and Materials 58, 955–970 (1958)

    Google Scholar 

  39. Stölken, J., Evans, A.: A microbend test method for measuring the plasticity length scale. Acta Materialia 46, 5109–5115 (1998)

    Article  Google Scholar 

  40. Xiang, Y., Vlassak, J.: Bauschinger and size effects in thin-film plasticity. Acta Materialia 54, 5449–5460 (2006)

    Article  Google Scholar 

  41. Zikry, M., Kao, M.: Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. Journal of the Mechanics and Physics of Solids 44, 1765–1798 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinxing Liu or Ai Kah Soh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Soh, A.K. Strain gradient elasto-plasticity with a new Taylor-based yield function. Acta Mech 227, 3031–3048 (2016). https://doi.org/10.1007/s00707-016-1671-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1671-9

Navigation