Skip to main content

Advertisement

Log in

Tensile fracture of graphene nanoribbons encapsulated in single-walled carbon nanotubes

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, we performed molecular dynamics simulations to study the fracture characteristics of a graphene nanoribbon encapsulated in a single-walled carbon nanotube (GNR@SWCNT) subjected to a uniaxial tensile loading. The effects of size and temperature on the fracture strength of nanocomposites under different strains were examined. The fracture strength and fracture strain of the nanocomposites increase with decreasing nanotube diameter. The maximum fracture strength and the corresponding fracture strain of GNR@SWCNT with a (10, 10) nanotube at 300 K were 126.3 GPa and 0.36, respectively. However, the fracture strength and fracture strain decrease with increasing temperature. The simulation results are useful in the design of nanodevices composed of carbon nanotubes and graphene nanoribbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ebbesen, T.W. (ed.): Carbon Nanotubes Preparation and Properties. CRC Press, New York (1997)

    Google Scholar 

  2. Dirote, E.V. (ed.): Trends in Nanotechnology Research. Nova Science Publishers, New York (2004)

    Google Scholar 

  3. Ottenhouse, A.P. (ed.): Carbon Nanotubes New Research. Nova Science Publishers, New York (2009)

    Google Scholar 

  4. CNR, Rao, Sood, A.K. (eds.): Graphene: Synthesis, Properties, and Phenomena. Wiley, Hoboken (2013)

    Google Scholar 

  5. Chuvilin, A., Bichoutskaia, E., Gimenez-Lopez, M.C., Chamberlain, T.W., Rance, G.A., Kuganathan, N., Biskupek, J., Kaiser, U., Khlobystov, A.N.: Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nat. Mater. 10, 687–692 (2011)

    Article  Google Scholar 

  6. Kou, L., Tang, C., Frauenheim, T., Chen, C.: Intrinsic charge separation and tunable electronic band gap of armchair graphene nanoribbons encapsulated in a double-walled carbon nanotube. J. Phys. Chem. Lett. 4, 1328–1333 (2013)

    Article  Google Scholar 

  7. Krasnenko, V., Boltrushko, V., Klopov, M., Hizhnyakov, V.: Conjoined structures of carbon nanotubes and graphene nanoribbons. Phys. Scr. 89, 044008 (2014)

    Article  Google Scholar 

  8. Wang, L., Zhang, H.W., Zhang, Z.Q., Zheng, Y.G., Wang, J.B.: Buckling behaviors of single-walled carbon nanotubes filled with metal atoms. Appl. Phys. Lett. 91, 051122 (2007)

    Article  Google Scholar 

  9. Guo, S.H., Zhu, B.E., Ou, X.D., Pan, Z.Y., Wang, Y.X.: Deformation of gold-filled single-walled carbon nanotubes under axial compression. Carbon 48, 4129–4135 (2010)

    Article  Google Scholar 

  10. Wu, C.D., Fang, T.H., Chan, C.Y.: A molecular dynamics simulation of the mechanical characteristics of a C\(_{60}\)-filled carbon nanotube under nanoindentation using various carbon nanotube tips. Carbon 49, 2053–2061 (2011)

    Article  Google Scholar 

  11. Wu, J., Zhang, K.W., Peng, X.Y., Li, S.M., Sun, L.Z., Zhong, J.X.: A molecular dynamics study of the Si-nanowire@carbon-nanotube nanocomposite with sp\(^{3}\) interfacial bonding. Comput. Mat. Sci. 79, 650–655 (2013)

    Article  Google Scholar 

  12. Talyzin, A.V., Anoshkin, I.V., Krasheninnikov, A.V., Nieminen, R.M., Nasibulin, A.G., Jiang, H., Kauppinen, E.I.: Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes. Nano Lett. 11, 4352–4356 (2011)

    Article  Google Scholar 

  13. Lebedeva, I.V., Popov, A.M., Knizhnik, A.A., Khlobystov, A.N., Potapkin, B.V.: Chiral graphene nanoribbon inside a carbon nanotube: ab initio study. Nanoscale 4, 4522–4529 (2012)

    Article  Google Scholar 

  14. Mandal, B., Sarkar, S., Sarkar, P.: Energetics and electronic structure of encapsulated graphene nanoribbons in carbon nanotube. J. Phys. Chem. A 117, 8568–8575 (2013)

    Article  Google Scholar 

  15. Chernov, A.I., Fedotov, P.V., Talyzin, A.V., Lopez, I.S., Anoshkin, I.V., Nasibulin, A.G., Kauppinen, E.I., Obraztsova, E.D.: Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes. ACS Nano 7, 6346–6353 (2013)

    Article  Google Scholar 

  16. Yin, Q., Shi, X.: Energy barrier for configurational transformation of graphene nanoribbon on nanotube. Theor. Appl. Mech. Lett. 4, 041010 (2014)

    Article  Google Scholar 

  17. Fang, T.H., Chang, W.J., Feng, Y.L.: Mechanical characteristics of graphene nanoribbons encapsulated in single-walled carbon nanotubes using molecular dynamics simulations. Appl. Surf. Sci. 356, 221–225 (2015)

    Article  Google Scholar 

  18. Haile, J.M.: Molecular Dynamics Simulation: Elementary Methods. Wiley, New York (1992)

    Google Scholar 

  19. Tersoff, J.: New empirical model for the structural properties of silicon. Phys. Rev. Lett. 56, 632 (1986)

    Article  Google Scholar 

  20. Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1988)

    Article  Google Scholar 

  21. Tersoff, J., Ruoff, R.S.: Structural properties of a carbon-nanotube crystal. Phys. Rev. Lett. 73, 676 (1994)

    Article  Google Scholar 

  22. Fang, T.H., Chang, W.J., Yang, J.C.: Temperature effect on mechanical properties of graphene sheets under tensile loading. Dig. J. Nanomater. Biostruct. 7, 1811–1816 (2012)

    Google Scholar 

  23. Fang, T.H., Chang, W.J., Lin, K.P., Shen, S.T.: Stability and wrinkling of defective graphene sheets under shear deformation. Curr. Appl. Phys. 14, 533–537 (2014)

    Article  Google Scholar 

  24. Lee, B.J., Lee, J.W.: A modified embedded atom method interatomic potential for carbon. Calphad 29, 7–16 (2005)

    Article  Google Scholar 

  25. Smolyanitsky, A., Killgore, J.P., Tewary, V.K.: Effect of elastic deformation on frictional properties of few-layer graphene. Phys. Rev. B 85, 035412 (2012)

    Article  Google Scholar 

  26. Owens, F.J.: Electronic and magnetic properties of graphene nanoribbons. Mol. Phys. 104, 3107–3109 (2006)

    Article  Google Scholar 

  27. Sun, J., Liang, W.Z.: Effects of external field and nanoribbon length on the electronic structure and properties of graphene nanoribbons. Acta Phys. Chim. Sin. 30, 439–445 (2014)

    Google Scholar 

  28. Bets, K.V., Yakobson, B.I.: Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons. Nano Res. 2, 161–166 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Win-Jin Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, TH., Chang, WJ., Feng, YL. et al. Tensile fracture of graphene nanoribbons encapsulated in single-walled carbon nanotubes. Acta Mech 227, 2961–2967 (2016). https://doi.org/10.1007/s00707-016-1669-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1669-3

Navigation