Skip to main content
Log in

Three-dimensional micromechanical analysis of the CNT waviness influence on the mechanical properties of polymer nanocomposites

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The effects of carbon nanotube (CNT) waviness on the elastic characterizations of polymer nanocomposites are investigated using a three-dimensional unit cell-based micromechanical model. The most important advantages of this model are its accuracy, simplicity, and efficiency. Both random and regular CNT arrangements can be included in the modeling. The wavy CNTs are modeled as sinusoidal solid CNT fibers while at any location along the length of CNT, the CNT is considered as transversely isotropic material. The polymer and interphase formed due to non-bonded interaction between a CNT and the polymer are assumed to be homogeneous and isotropic as well. Results show that the effect of CNT waviness is not important for the effective coefficients \(C_{11}\), \(C_{12}\), and \(C_{13}\) of the nanocomposites. CNT waviness plays a critical role in determining the effective coefficients \(C_{22}\), \(C_{23}\), \(C_{33}\), and \(C_{44}\) of the nanocomposites. Also, it is found that the CNT waviness slightly affects the effective values of \(C_{55}\) and \(C_{66}\). The effects of volume fraction of CNT and interphase on the mechanical properties of the nanocomposite are examined. Comparison of the present model results shows very good agreement with other available micromechanical analysis and experiment. As comparing with the finite element method, the present model requires much less computational time for obtaining the effective properties of the nanocomposites. Consequently, the results emphasize that all four important parameters, i.e., CNT behavior and waviness, CNT random arrangement, and interphase contributions, should be precisely included in the modeling to predict a more realistic outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000)

    Article  Google Scholar 

  2. Ansari, R., Mirnezhad, M., Rouhi, H.: Torsional buckling analysis of chiral multi-walled carbon nanotubes based on an accurate molecular mechanics model. Acta Mech. 226, 2955–2972 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Thostenson, E.T., Ren, Z., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Article  Google Scholar 

  4. Kundalwal, S.I., Ray, M.C.: Estimation of thermal conductivities of a novel fuzzy fiber reinforced composite. Int. J. Ther. Sci. 76, 90–100 (2014)

    Article  MATH  Google Scholar 

  5. Ansari, R., Daliri, M., Hosseinzadeh, M.: On the van der Waals interaction of carbon nanotubes as electromechanical nanothermometers. Acta Mech. Sin. 29, 622–632 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Schulte, K.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites- A comparative study. Compos. Sci. Technol. 65, 2300–2313 (2005)

    Article  Google Scholar 

  7. Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 1624–1652 (2006)

    Article  Google Scholar 

  8. Ngabonziza, Y., Li, J., Barry, C.F.: Electrical conductivity and mechanical properties of multiwalled carbon nanotube-reinforced polypropylene nanocomposites. Acta Mech. 220, 289–298 (2011)

    Article  MATH  Google Scholar 

  9. Tan, H., Jiang, L.Y., Huang, Y., Liu, B., Hwang, K.C.: The effect of van der Waals based interface cohesive law on carbon nanotube-reinforced composite materials. Compos. Sci. Technol. 67, 2941–2946 (2007)

    Article  Google Scholar 

  10. Wei, C.: Adhesion and reinforcement in carbon nanotube polymer composite. Appl. Phys. Lett. 88, 093108 (2006)

    Article  Google Scholar 

  11. Fisher, F.T., Bradshaw, R.D., Brinson, L.C.: Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties. Compos. Sci. Technol. 63, 1689–1703 (2003)

    Article  Google Scholar 

  12. Fisher, F.T., Bradshaw, R.D., Brinson, L.C.: Effects of nanotube waviness on the modulus of nanotube-reinforced polymers. Appl. Phys. Lett. 80, 4647 (2002)

    Article  Google Scholar 

  13. Xiao, K., Zhang, L.: Effective separation and alignment of long entangled carbon nanotubes in epoxy. J. Mater. Sci. 40, 6513–6516 (2005)

    Article  Google Scholar 

  14. Joshi, U.A., Sharma, S.C., Harsha, S.P.: Effect of carbon nanotube orientation on the mechanical properties of nanocomposites. Compos. Part B. 43, 2063–2071 (2012)

    Article  Google Scholar 

  15. McCarthy, B., Coleman, J.N., Curran, S.A., Dalton, A.B., Davey, A.P., Konya, Z., Fonseca, A., Nagy, J.B., Blau, W.J.: Observation of site selective binding in a polymer nanotube composite. J. Mater. Sci. Lett. 19, 2239–2241 (2000)

    Article  Google Scholar 

  16. Lordi, V., Yao, N.: Molecular mechanics of binding in carbon-nanotube polymer composites. J. Mater. Res. 15, 2770–2779 (2000)

    Article  Google Scholar 

  17. Liao, K., Li, S.: Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl. Phys. Lett. 79, 4225–4227 (2001)

    Article  Google Scholar 

  18. Seidel, G.D., Lagoudas, D.C.: Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38, 884–907 (2006)

    Article  Google Scholar 

  19. Shokrieh, M.M., Rafiee, R.: On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region. Compos. Struct. 92, 647–652 (2010)

    Article  Google Scholar 

  20. Tsai, J.L., Tzeng, S.H., Chiu, Y.T.: Characterizing elastic properties of carbon nanotube/polymer nanocomposites using multi-scale simulation. Compos. Part B. 41, 106–115 (2010)

    Article  Google Scholar 

  21. Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M.: Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading. Compos. Struct. 93, 2250–2259 (2011)

    Article  Google Scholar 

  22. Tserpes, K.I., Chanteli, A.: Parametric numerical evaluation of the effective elastic properties of carbon nanotube-reinforced polymers. Compos. Struct. 99, 366–374 (2013)

    Article  Google Scholar 

  23. Joshi, P., Upadhyay, S.H.: Effect of interphase on elastic behavior of multiwalled carbon nanotube reinforced composite. Comput. Mater. Sci. 87, 267–273 (2014)

    Article  Google Scholar 

  24. Herasati, S., Zhang, L.: Interphase effect on the macroscopic elastic properties of non-bonded single-walled carbon nanotube composites. Compos. Part B. 77, 52–58 (2015)

    Article  Google Scholar 

  25. Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanics-based viscoelastic analysis of carbon nanotube-reinforced composites subjected to uniaxial and biaxial loading. Compos. Part B. 90, 512–522 (2016)

    Article  Google Scholar 

  26. Cao, A., Dickrell, P.L., Sawyer, W.G., Ghasemi-Nejhad, M.N., Ajayan, P.M.: Super-compressible foam-like carbon nanotube films. Science 310, 1307–1310 (2005)

    Article  Google Scholar 

  27. Yamamoto, N., Hart, A.J., Garcia, E.J., Wicks, S.S., Duong, H.M., Slocum, A.H., Wardle, B.L.: High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibers for multifunctional enhancement of structural composites. Carbon 47, 551–560 (2009)

    Article  Google Scholar 

  28. Anumand, V., Gibson, R.F.: A comprehensive closed form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites. Compos. Part A. 37, 2178–2185 (2006)

    Article  Google Scholar 

  29. Li, C., Chou, T.W.: Failure of carbon nanotube/polymer composites and the effect of nanotube waviness. Compos. Part A. 40, 1580–1586 (2009)

    Article  Google Scholar 

  30. Shady, E., Gowayed, Y.: Effect of nanotube geometry on the elastic properties of nanocomposites. Compos. Sci. Technol. 70, 1476–1481 (2010)

    Article  Google Scholar 

  31. Kundalwal, S.I., Ray, M.C.: Effect of carbon nanotube waviness on the elastic properties of the fuzzy fiber reinforced composites. J. Appl. Mech. 80, 021010 (2013)

    Article  Google Scholar 

  32. Yanase, K., Moriyama, S., Ju, J.W.: Effects of CNT waviness on the effective elastic responses of CNT-reinforced polymer composites. Acta Mech. 224, 1351–1364 (2013)

    Article  MATH  Google Scholar 

  33. Farsadi, M., Ochsner, A., Rahmandoust, M.: Numerical investigation of composite materials reinforced with waved carbon nanotubes. J. Comp. Mater. 47, 1325–1434 (2012)

    Google Scholar 

  34. Yazdchi, K., Salehi, M.: The effects of CNT waviness on interfacial stress transfer characteristics of CNT/polymer composites. Compos. Part A. 42, 1301–1309 (2011)

    Article  Google Scholar 

  35. Chen, X.L., Liu, Y.J.: Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites. Comput. Mater. Sci. 29, 1–11 (2004)

    Article  Google Scholar 

  36. Kundalwal, S.I., Ray, M.C.: Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method. Eur. J. Mech. A Solids 36, 191–203 (2012)

    Article  Google Scholar 

  37. Griebel, M., Hamaekers, J.: Molecular dynamics simulations of the elastic moduli of polymer carbon nanotube composites. Comput. Meth. Appl. Mech. Eng. 193, 1773–1788 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Han, Y., Elliott, J.: Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput. Mater. Sci. 39, 315–323 (2007)

    Article  Google Scholar 

  39. Mahmoodi, M.J., Aghdam, M.M., Shakeri, M.: The effects of interfacial debonding on the elastoplastic response of unidirectional silicon carbide–titanium composites. Part C J. Mech. Eng. Sci. 223, 259–269 (2010)

    Article  Google Scholar 

  40. Mahmoodi, M.J., Aghdam, M.M., Shakeri, M.: Micromechanical modeling of interface damage of metal matrix composites subjected to off-axis loading. Mater. Des. 31, 829–836 (2010)

    Article  Google Scholar 

  41. Mahmoodi, M.J., Aghdam, M.M.: Damage analysis of fiber reinforced Ti-alloy subjected to multi-axial loading-a micromechanical approach. Mater. Sci. Eng. A 528, 7983–7990 (2011)

    Article  Google Scholar 

  42. Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Ansari, R.: Interphase effects on the thermo-mechanical properties of three-phase composites. Part C J. Mech. Eng. Sci. (2015). doi:10.1177/0954406215612830

  43. Pan, Y., Weng, G.J., Meguid, S.A., Bao, W.S., Zhu, Z.H., Hamoud, A.M.S.: Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites. Mech. Mater. 58, 1–11 (2013)

    Article  Google Scholar 

  44. Hsiao, H.M., Daniel, I.M.: Elastic properties of composites with fiber waviness. Compos. Part A 27, 931–941 (1996)

    Article  Google Scholar 

  45. Kundalwal, S.I., Ray, M.C.: Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite. Compos. Part B 57, 199–209 (2014)

    Article  Google Scholar 

  46. Mortazavi, B., Bardon, J., Ahzi, S.: Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study. Comput. Mater. Sci. 69, 100–106 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Mahmoodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Hassanzadeh-Aghdam, M.K. & Mahmoodi, M.J. Three-dimensional micromechanical analysis of the CNT waviness influence on the mechanical properties of polymer nanocomposites. Acta Mech 227, 3475–3495 (2016). https://doi.org/10.1007/s00707-016-1666-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1666-6

Navigation