Skip to main content

Advertisement

Log in

Crush behaviour of foam-filled thin-walled conical frusta: analytical, numerical and experimental studies

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper is concerned with a detailed study of the crush behaviour of foam-filled conical frusta using numerical, analytical and experimental techniques. Finite element models of thin-walled frusta with and without metallic foam filler are developed to simulate their progressive collapse behaviour under axial crush loads. The finite element results are compared with a kinematically admissible analytical model developed earlier by the authors as well as experimentally using crush tests. The effect of key design parameters such as taper angle, slenderness ratio, and foam filling are carefully examined and discussed. The results show that introducing a taper angle in a straight column helps to reduce the initial crippling load and increases the resistance to global buckling. Besides, the filling of the metallic foam further increases the specific energy absorption efficiency. This is due to the densification of the filler foam and the reduction of the plastic fold length. This work is intended to provide guidelines for the design of thin-walled metallic energy absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Q.F., Liu, Y.J., Wang, H.D., Yan, S.Y.: Finite element analysis and shape optimization of automotive crash-box subjected to low velocity impact. In: International Conference on Measuring Technology and Mechatronics Automation, ICMTMA’09, pp. 791–794. Zhangjiajie China, April 11–12 (2009)

  2. Desjardins, S.P.: The evolution of energy absorption systems for crashworthy helicopter seats. J. Am. Helicopter Soc. 51(2), 150–163 (2006)

    Article  Google Scholar 

  3. Alexander, J.: An approximate analysis of the collapse of thin cylindrical shells under axial loading. Q. J. Mech. Appl. Math. 13, 10–15 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pugsley, A.G.: On the crumpling of thin tubular struts. Q. J. Mech. Appl. Math. 32, 1–7 (1979)

    Article  Google Scholar 

  5. Wierzbicki, T., Abramowicz, W.: On the crushing mechanics of thin-walled structures. J. Appl. Mech. 50(4a), 727–734 (1983)

    Article  MATH  Google Scholar 

  6. Abramowicz, W., Wierzbicki, T.: Axial crushing of multicorner sheet metal columns. J. Appl. Mech. 56, 113–120 (1989)

    Article  Google Scholar 

  7. Abramowicz, W., Jones, N.: Dynamic axial crushing of square tubes. Int. J. Impact Eng. 2, 179–208 (1984)

    Article  Google Scholar 

  8. Meguid, S.A., Attia, M.S., Stranart, J.C.: Solution stability in the dynamic collapse of square aluminium columns. Int. J. Impact Eng. 34(2), 348–359 (2007)

    Article  Google Scholar 

  9. Alghamdi, A.A.A.: Collapsible impact energy absorbers: an overview. Thin-Walled Struct. 39, 189–213 (2001)

    Article  Google Scholar 

  10. Eifert, H., Banhart, J., Baumeister, J., Yu, M.: Weight Savings by Aluminium Metal Foams: Production, Properties and Applications in Automotive. SAE Technical Paper 1999-01-0887 (1999). doi:10.4271/1999-01-0887

  11. Meguid, S.A., Cheon, S.S., El-Abbasi, N.: FE modelling of deformation localization in metallic foams. Finite Elem. Anal. Des. 38(7), 631–643 (2002)

    Article  MATH  Google Scholar 

  12. Thornton, P.: Energy Absorption by Foam Filled Structures. SAE Technical Paper 800081 (1980). doi:10.4271/800081

  13. Mantena, P.R., Mann, R.: Impact and dynamic response of high-density structural foams used as filler inside circular steel tube. Compos. Struct. 61, 291–302 (2003)

    Article  Google Scholar 

  14. Hanssen, A.G., Langseth, M., Hopperstad, O.S.: Static and dynamic crushing of square aluminium extrusions with aluminium foam filler. Int. J. Impact Eng. 24, 347–383 (2000)

    Article  MATH  Google Scholar 

  15. Chen, W., Wierzbicki, T.: Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption. Thin-Walled Struct. 39, 287–306 (2001)

    Article  Google Scholar 

  16. Fyllingen, Ø., Hopperstad, O., Hanssen, A., Langseth, M.: Modelling of tubes subjected to axial crushing. Thin Walled Struct. 48, 134–142 (2010)

    Article  Google Scholar 

  17. Marzbanrad, J., Abdollahpoor, A., Mashadi, B.: Effects of the triggering of circular aluminum tubes on crashworthiness. Int. J. Crashworthiness 14, 591–599 (2009)

    Article  Google Scholar 

  18. Zhang, X., Cheng, G., Zhang, H.: Theoretical prediction and numerical simulation of multi-cell square thin-walled structures. Thin-Walled Struct. 44, 1185–1191 (2006)

    Article  Google Scholar 

  19. Santosa, S., Wierzbicki, T.: Crash behavior of box columns filled with aluminum honeycomb or foam. Comput. Struct. 68, 343–367 (1998)

    Article  MATH  Google Scholar 

  20. Meguid, S.A., Attia, M., Monfort, A.: On the crush behaviour of ultralight foam-filled structures. Mater. Des. 25, 183–189 (2004)

    Article  Google Scholar 

  21. Attia, M.S., Meguid, S.A., Nouraei, H.: Nonlinear finite element analysis of the crush behaviour of functionally graded foam-filled columns. Finite Elem. Anal. Des. 61, 50–59 (2012)

    Article  MathSciNet  Google Scholar 

  22. Stangl, P., Meguid, S.A.: Experimental and theoretical evaluation of a novel shock absorber for an electrically powered vehicle. Int. J. Impact Eng. 11, 41–59 (1991)

    Article  Google Scholar 

  23. Gupta, N., Sheriff, N.M., Velmurugan, R.: A study on buckling of thin conical frusta under axial loads. Thin-Walled Struct. 44, 986–996 (2006)

    Article  Google Scholar 

  24. Reid, S., Reddy, T.: Axial crushing of foam-filled tapered sheet metal tubes. Int. J. Mech. Sci. 28, 643–656 (1986)

    Article  Google Scholar 

  25. Ahmad, Z., Thambiratnam, D.: Crushing response of foam-filled conical tubes under quasi-static axial loading. Mater. Des. 30, 2393–2403 (2009)

    Article  Google Scholar 

  26. Meguid, S.A., Yang, F., Verberne, P.: Progressive collapse of foam-filled conical frustum using kinematically admissible mechanism. Int. J. Impact Eng. 82, 25–35 (2015)

    Article  Google Scholar 

  27. Meguid, S.A., Stranart, J., Heyerman, J.: On the layered micromechanical three-dimensional finite element modelling of foam-filled columns. Finite Elem. Anal. Des. 40, 1035–1057 (2004)

    Article  Google Scholar 

  28. Hanssen, A.G., Hopperstad, O.S., Langseth, M., Ilstad, H.: Validation of constitutive models applicable to aluminium foams. Int. J. Mech. Sci. 44, 359–406 (2002)

    Article  Google Scholar 

  29. Santosa, S.P., Wierzbicki, T., Hanssen, A.G., Langseth, M.: Experimental and numerical studies of foam-filled sections. Int. J. Impact Eng. 24, 509–534 (2000)

    Article  Google Scholar 

  30. Abramowicz, W., Jones, N.: Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically. Int. J. Impact Eng. 19, 415–437 (1997)

    Article  Google Scholar 

  31. Jensen, Ø., Hopperstad, O., Langseth, M.: Transition from progressive to global buckling of aluminium extrusions—a numerical study. Int. J. Crashworthiness 10(6), 609–620 (2005)

    Article  Google Scholar 

  32. Lee, Y.Y., Zhao, X., Reddy, J.N.: Postbuckling analysis of functionally graded plates subject to compressive and thermal loads. Comput. Methods Appl. Mech. Eng. 199, 1645–1653 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Meguid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meguid, S.A., Yang, F. & Hou, P. Crush behaviour of foam-filled thin-walled conical frusta: analytical, numerical and experimental studies. Acta Mech 227, 3391–3406 (2016). https://doi.org/10.1007/s00707-016-1662-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1662-x

Navigation