Skip to main content
Log in

Uniform strain fields inside periodic inclusions incorporating interface effects in anti-plane shear

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We incorporate the mechanics of the interface to construct optimal shapes of periodic inclusions which achieve uniform internal strain fields in an elastic plane subjected to uniform remote anti-plane shear loading. These shapes are determined by solving a problem of the existence of a holomorphic function which is defined outside the unit circle in an infinite imaginary plane with specific boundary value on the unit circle. We illustrate such shapes using several examples. We show that the incorporation of interface mechanics has a significant effect on the design of such shapes and hence on the existence of these inclusions at the nanoscale. In addition, we show that if the period of the inclusion–matrix system exceeds roughly seven times the inclusion size, such shapes can be treated essentially as being equivalent to those of a single inclusion enclosing the same uniform internal strain in the presence of identical bulk and interface material constants, inclusion size and remote loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vigdergauz, S.: Two-dimensional grained composites of extreme rigidity. ASME J. Appl. Mech. 61(2), 390–394 (1994)

    Article  MATH  Google Scholar 

  2. Grabovsky, Y., Kohn, R.V.: Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. II: the Vigdergauz microstructure. J. Mech. Phys. Solids 43(6), 949–972 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Liu, L., James, R.D., Leo, P.H.: Periodic inclusion–matrix microstructures with constant field inclusions. Metall. Mater. Trans. A 38(4), 781–787 (2007)

    Article  Google Scholar 

  4. Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82(4), 535–537 (2003)

    Article  Google Scholar 

  5. Fang, Q.H., Liu, Y.W.: Size-dependent elastic interaction of a screw dislocation with a circular nano-inhomogeneity incorporating interface stress. Scr. Mater. 55(1), 99–102 (2006)

    Article  MathSciNet  Google Scholar 

  6. Tian, L., Rajapakse, R.K.N.D.: Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity. Int. J. Solids Struct. 44, 7988–8005 (2007)

    Article  MATH  Google Scholar 

  7. Luo, J., Wang, X.: On the anti-plane shear of an elliptic nano inhomogeneity. Eur. J. Mech. A Solids 28(5), 926–934 (2009)

    Article  MATH  Google Scholar 

  8. Avazmohammadi, R., Yang, F., Abbasion, S.: Effect of interface stresses on the elastic deformation of an elastic half-plane containing an elastic inclusion. Int. J. Solids Struct. 46(14), 2897–2906 (2009)

    Article  MATH  Google Scholar 

  9. Dong, C.Y., Lo, S.H.: Boundary element analysis of an elastic half-plane containing nanoinhomogeneities. Comput. Mater. Sci. 73, 33–40 (2013)

    Article  Google Scholar 

  10. Li, J., Fang, Q., Liu, Y.: Crack interaction with a second phase nanoscale circular inclusion in an elastic matrix. Int. J. Eng. Sci. 72, 89–97 (2013)

    Article  Google Scholar 

  11. Dai, M., Gao, C.F.: Non-circular nano-inclusions with interface effects that achieve uniform internal strain fields in an elastic plane under anti-plane shear. Arch. Appl. Mech. (2015). doi:10.1007/s00419-015-1098-0

    Google Scholar 

  12. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gurtin, M.E., Weissmüller, J., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78(5), 1093–1109 (1998)

    Article  Google Scholar 

  14. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1975)

    MATH  Google Scholar 

  15. Ruud, J.A., Witvrouw, A., Spaepen, F.: Bulk and interface stresses in silver-nickel multilayered thin films. J. Appl. Phys. 74(4), 2517–2523 (1993)

    Article  Google Scholar 

  16. Josell, D., Bonevich, J.E., Shao, I., Cammarata, R.C.: Measuring the interface stress: Silver/nickel interfaces. J. Mater. Res. 14(11), 4358–4365 (1999)

    Article  Google Scholar 

  17. Dai, M., Ru, C.Q., Gao, C.F.: Uniform strain fields inside multiple inclusions in an elastic infinite plane under anti-plane shear. Math. Mech. Solids (2014). doi:10.1177/1081286514564638

    Google Scholar 

  18. Cherepanov, G.P.: Inverse problem of the plane theory of elasticity. Prikladnaya Matematika of Mechanika (PMM) 38, 963–979 (1974)

    MathSciNet  Google Scholar 

  19. Dai, M., Schiavone, P., Gao, C.F.: Periodic inclusions with uniform internal hydrostatic stress in an infinite elastic plane. Z. Angew. Math. Mech. (2016). doi:10.1002/zamm.201500298

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schiavone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, M., Schiavone, P. & Gao, CF. Uniform strain fields inside periodic inclusions incorporating interface effects in anti-plane shear. Acta Mech 227, 2795–2803 (2016). https://doi.org/10.1007/s00707-016-1660-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1660-z

Keywords

Navigation