Skip to main content
Log in

Mixed Lagrangian formulation for size-dependent couple stress elastodynamic response

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, a mixed Lagrangian multiplier formulation is developed for consistent size-dependent couple stress elastodynamic response. This extends previous work on quasistatic couple stress response that also requires the rotation to be one half of the curl of displacement. A Lagrange multiplier, which turns out to be related to the skew-symmetric part of the force stress, is used to constrain the relation between rotation and displacement, so that rotation becomes an independent variable and \(\hbox {C}^{1}\) continuity is avoided in the weak form. The finite element method is applied first to obtain the matrix form of the Lagrangian formulation in space, and then, discrete variational time integration is introduced to produce the discrete action. Afterward, the variation of discrete action is applied to derive the governing equations in algebraic form, which are used, along with the initial condition relations, to obtain the solutions at finite time steps. Finally, the problems of uniaxial deformation of a square plate, transverse deformation of a cantilever, and uniform traction on a square plate with a hole are investigated under this formulation, and the results are compared to existing methods where possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Voigt, W.: Theoretische Studien über die Elastizitätsverhältnisse der Kristalle (Theoretical Studies on the Elasticity Relationships of Crystals). In: Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen, vol. 34 (1887)

  2. Cosserat, E., Cosserat, F.: Théorie des corps déformables (Theory of Deformable Bodies). A. Hermann et Fils, Paris (1909)

    MATH  Google Scholar 

  3. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eringen, A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed.) Fracture, vol. 2, pp. 662–729. Academic Press, New York (1968)

    Google Scholar 

  5. Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon Press, Oxford (1986)

    MATH  Google Scholar 

  6. Chen, S., Wang, T.: Strain gradient theory with couple stress for crystalline solids. Eur. J. Mech. A Solids 20, 739–756 (2001)

    Article  MATH  Google Scholar 

  7. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  9. Koiter, W.T.: Couple stresses in the theory of elasticity, I and II. In: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Series B. Physical Sciences, vol. 67, pp. 17–44 (1964)

  10. Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48, 2496–2510 (2011)

    Article  Google Scholar 

  11. Neff, P., Münch, I., Ghiba, I.-D., Madeo, A.: On some fundamental misunderstandings in the indeterminate couple stress model. (A comment on recent papers of A.R.Hadjesfandiari and G.F. Dargush). Int. J. Solids Struct. 81, 233–243 (2016)

    Article  Google Scholar 

  12. Neff, P., Ghiba, I.-D., Madeo, A., Münch, I.: Correct traction boundary conditions in the indeterminate couple stress model. arXiv:1504.00448 [math-ph]

  13. Madeo, A., Ghiba, I-D., Neff, P., Münch, I.: A new view on boundary conditions in the Grioli–Koiter–Mindlin–Toupin indeterminate couple stress model. arXiv:1505.00995 [math-ph]

  14. Hadjesfandiari, A.R., Dargush, G.F.: Evolution of generalized couple-stress continuum theories: a critical analysis. arXiv:1501.03112 [physics.gen-ph]

  15. Hadjesfandiari, A.R., Dargush, G.F.: Foundations of consistent couple stress theory. arXiv:1509.06299 [physics.gen-ph]

  16. Lanczos, C.: The Variational Principles of Mechanics. University of Toronto Press, Toronto (1970)

    MATH  Google Scholar 

  17. Fung, Y.C.: Foundations of Solid Mechanics. Prentice-Hall, N.J. (1965)

    Google Scholar 

  18. Reissner, E.: On a variational theorem in elasticity. J. Math. Phys. 29, 90–95 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, H.C.: On some variational principles in the theory of elasticity and the theory of plasticity. Sci. Sin. 4, 33–54 (1955)

    MATH  Google Scholar 

  20. Washizu, K.: On the variational principles of elasticity and plasticity. In: Technical Report 25-18 MIT, Aeroelastic and Structures Research Laboratory, Cambridge, MA (1955)

  21. Washizu, K.: Variational Methods in Elasticity and Plasticity. Pergamon, New York (1968)

    MATH  Google Scholar 

  22. Sivaselvan, M.V., Reinhorn, A.M.: Nonlinear Structural Analysis Towards Collapse Simulation: A Dynamical Systems Approach. Rep. MCEER-05-0004, MCEER/SUNY at Buffalo, Buffalo, NY (2004)

  23. Sivaselvan, M.V., Reinhorn, A.M.: Lagrangian approach to structural collapse simulation. J. Eng. Mech. 132, 795–805 (2006)

    Article  Google Scholar 

  24. Sivaselvan, M.V., Lavan, O., Dargush, G.F., Kurino, H., Hyodo, Y., Fukuda, R., Sato, K., Apostolakis, G., Reinhorn, A.M.: Numerical collapse simulation of large-scale structural systems using an optimization-based algorithm. Earthq. Eng. Struct. Dyn. 38, 655–677 (2009)

    Article  Google Scholar 

  25. Lavan, O., Sivaselvan, M.V., Reinhorn, A.M., Dargush, G.F.: Progressive collapse analysis through strength degradation and fracture in the mixed Lagrangian formulation. Earthq. Eng. Struct. Dyn. 38, 1483–1504 (2009)

    Article  Google Scholar 

  26. Lavan, O.: Dynamic analysis of gap closing and contact in the mixed Lagrangian framework: toward progressive collapse prediction. J. Eng. Mech. 136, 979–986 (2010)

    Article  Google Scholar 

  27. Apostolakis, G., Dargush, G.F.: Mixed Lagrangian formulation for linear thermoelastic response of structures. J. Eng. Mech. 138, 508–518 (2012)

    Article  Google Scholar 

  28. Apostolakis, G., Dargush, G.F.: Mixed variational principles for dynamic response of thermoelastic and poroelastic continua. Int. J. Solids Struct. 50, 642–650 (2013)

    Article  Google Scholar 

  29. Apostolakis, G., Dargush, G.F.: Variational methods in irreversible thermoelasticity: theoretical developments and minimum principles for the discrete form. Acta Mech. 224, 2065–2088 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cadzow, J.A.: Discrete calculus of variations. Int. J. Control 11, 393–407 (1970)

    Article  MATH  Google Scholar 

  31. Darrall, B.T., Dargush, G.F., Hadjesfandiari, A.R.: Finite element Lagrange multiplier formulation for size-dependent skew-symmetric couple-stress planar elasticity. Acta. Mech. 225, 195–212 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Darrall, B.T., Hadjesfandiari, A.R., Dargush, G.F.: Size-dependent piezoelectricity: a 2D finite element formulation for electric field-mean curvature coupling in dielectrics. Eur. J. Mech. A Solids 49, 308–320 (2015)

    Article  MathSciNet  Google Scholar 

  33. Park, S.K., Gao, X.-L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. Angew. Math. Phys. 59, 904–917 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, X.X., Wu, H.A.: The Basis of Computational Mechanics. University of Science and Technology of China Press, Hefei (2009)

    Google Scholar 

  35. Simulia: Abaqus 6.12 documentation. Dassault Systèmes Simulia Corp. (2012)

  36. Hadjesfandiari, A.R., Dargush, G.F.: Boundary element formulation for plane problems in couple stress elasticity. Int. J. Num. Methods Eng. 89, 618–636 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary F. Dargush.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, G., Dargush, G.F. Mixed Lagrangian formulation for size-dependent couple stress elastodynamic response. Acta Mech 227, 3451–3473 (2016). https://doi.org/10.1007/s00707-016-1644-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1644-z

Navigation