Skip to main content
Log in

Continuum model of a one-dimensional lattice of metamaterials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The continuum model of a one-dimensional crystal lattice of a metamaterial is studied in this paper. First, the dispersive relation of a lattice wave in a one-dimensional crystal lattice of metamaterial is established and compared with that of the classic material. Then, the continuous medium modeling of the metamaterial is studied. It leads to the classical continuum model, the strain gradient continuum model, and the nonlocal gradient continuum model based on different assumptions. The disadvantages of the classic continuum model and the gradient continuum model are discussed. The nonlocal gradient continuum model is derived based on the nonlocal assumption of a continuous displacement field. The stability of dispersive curves is guaranteed, and the conceptions of negative mass and infinite mass are also avoided. The dispersive curves which correspond to the three kinds of models are compared with those of a discrete crystal lattice of metamaterial. The disadvantages of the classic continuum model and the gradient continuum model and the appropriate selection of a nonlocal parameter in the nonlocal gradient continuum model are discussed based on the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Born, M., Huang, K.: Dynamical Theory of Crystal Lattice. Oxford University Press, London (1954)

    MATH  Google Scholar 

  2. Fang, N., Xi, D., Xu, J., et al.: Ultrosonic metamaterial with negative modulus. Nat. Mater. 5, 452–456 (2006)

    Article  Google Scholar 

  3. Fang, F., Koschny, T., Soukoulis, C.M.: Optical anisotropic metamaterials: negative refraction and focusing. Phys. Rev. B 79, 245127 (2009)

    Article  Google Scholar 

  4. Huang, H., Sun, C.: Wave attenuation mechanism in an acousticmetamaterial with negative effective mass density. New J. Phys. 11, 013003 (2009)

    Article  Google Scholar 

  5. Huang, H., Sun, C., Huang, G.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47, 610–617 (2009)

    Article  MathSciNet  Google Scholar 

  6. Huang, G., Sun, C.: Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoust. 132, 031003 (2010)

    Article  Google Scholar 

  7. Kadic, M., Bückmann, T., Stenger, N., Thiel, M., Wegener, M.: On the practicability of pentamode mechanical metamaterials. Appl. Phys. Lett. 100, 191901 (2012)

    Article  Google Scholar 

  8. Liu, Z.Y., Zhang, X.X., Mao, Y.W., et al.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    Article  Google Scholar 

  9. Li, J., Chan, C.T.: Double-negative acoustic metamaterials. Phys. Rev. E 70, 055602 (2004)

    Article  Google Scholar 

  10. Lu, M.H., Fang, L., Chen, Y.F.: Phononic crystals and acoustic metamaterials. Mater. Today 12, 34–42 (2009)

    Article  Google Scholar 

  11. Liu, A.P., Zhu, R., Liu, X.N., et al.: Multi-displacement microstructure continuum modeling of anisotropic elastic metamaterials. Wave Motion 49, 411–426 (2012)

    Article  Google Scholar 

  12. Milton, G.W., Willis, J.R.: On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. A 463, 855–880 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–39669 (2000)

    Article  Google Scholar 

  14. Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788–792 (2004)

    Article  Google Scholar 

  15. Sihvola, A.: Metamaterials in electromagnetics. Metamaterials 1, 2–11 (2007)

    Article  Google Scholar 

  16. Shamonina, E., Solymar, L.: How the subject started metamaterials. Metamaterials 1, 12–18 (2007)

    Article  Google Scholar 

  17. Sheng, P., Mei, J., Liu, Z.Y., Wen, W.J.: Dynamic mass density and acoustic metamaterials. Phys. B 394, 256–261 (2007)

    Article  Google Scholar 

  18. Zhou, X.M., Hu, G.K.: Analytic model of elastic metamaterials with local resonances. Phys. Rev. B 79, 195109 (2009)

    Article  Google Scholar 

  19. Zhu, R., Huang, H., Huang, G.L., et al.: Microstructure continuum modeling of an elastic metamaterial. Int. J. Eng. Sci. 49, 1477–1485 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wei, P. & Tang, Q. Continuum model of a one-dimensional lattice of metamaterials. Acta Mech 227, 2361–2376 (2016). https://doi.org/10.1007/s00707-016-1613-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1613-6

Keywords

Navigation