Skip to main content
Log in

First-order form, Lagrange’s form, and Gibbs–Appell’s form of Kane’s equations

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper proposes that Kane’s equations for a simple nonholonomic system are the first-order form of generalized speeds. When the first-order form of Kane’s equations is put in matrix form, the element of the mass matrix is identical to the inertia coefficient. Because the orthogonal set of partial velocities will decouple the first-order equations, one can use the orthogonal criterion to generate efficient equations of motion. With the presented first-order form, Kane’s equations are different from Maggi’s or Gibbs–Appell’s equations. Moreover, in order to clarify the relationship between Kane’s approach and classical approaches, we start from Kane’s equations and introduce kinetic energy or acceleration energy functions to derive Lagrange’s or Gibbs–Appell’s forms of Kane’s equations for the system. We found that the Lagrange’s forms of Kane’s equations can be used to solve nonholonomic systems without introducing Lagrangian multipliers. At last, the first-order form, Lagrange’s forms, and Gibbs–Appell’s forms of Kane’s equations are, respectively, used to depict the derivation of first-order equations of motion for a rolling coin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(a_i (i=1, 2, 3)\) :

Components of acceleration

A :

Function used in Lagrange’s and Gibbs–Appell’s forms of Kane’s equations

\(A_{sr},\;B_s \) :

Functions of \(q_s (s=1,\ldots ,n)\) and t

\(c_i \) :

Abbreviation of \(\cos q_i \)

\(C, C^{*}\) :

A rigid body and its mass center

\(F_i \) :

Components of force \(\mathbf{F}^{C}\)

g :

Local gravitational acceleration

G :

Gibbs function or acceleration energy function

\(\tilde{G}\) :

Equal to G minus A

\(I_i \) :

Components of principal moment of inertia

\(K_r, K_r^*, \hat{{K}}_r^*\) :

rth generalized active force, rth generalized inertia force, and part of the rth generalized inertia forces for particles system

\({ }^CK_r, { }^CK_r^*, { }^C\hat{{K}}_r^*\) :

rth generalized active force, rth generalized inertia force, and part of the rth generalized inertia forces for rigid body C

\(m_i \) :

Mass of a particle

\(m_{rs}, { }^C(m_{rs} )\) :

Inertia coefficients for a particles system and for rigid body C

M :

Mass of a rigid body

n :

Number of generalized coordinates

N :

Newtonian reference frame

p :

Degree of freedom

\(P_i \) :

A typical particle

\(P_r \) :

Functions used in Lagrange’s form of Kane’s equations

\(q_i (i=1,\ldots ,n)\) :

Generalized coordinates

R :

Radius of a rolling coin

\(s_i \) :

Abbreviation of \(\sin q_i \)

S :

A nonholonomic system

t :

Time

T :

Kinetic energy function

\(T_i \) :

Components of force \(\mathbf{T}^{C}\)

\(u_r \) :

rth generalized speed

\(v_i (i=1, 2, 3)\) :

Velocity components of a rolling coin

\(\bar{{v}}_i (i=1, 2, 3)\) :

Velocity components of mass center of a rolling coin

\(W_{sr},\;X_s,\;Y_{rs},\;Z_r \) :

Functions of \(q_s (s=1,\ldots ,n)\) and t

\(\mathbf{a}_i \) :

Acceleration of \(P_i \)

\(\mathbf{a}^{C^{*}}\) :

Acceleration of mass center of rigid body \(C^{*}\)

\(\mathbf{b}_i \) :

Constitute the base vectors of a reference frame

\(\mathbf{c}_\mathbf{i} \) :

Constitute the base vectors of a rigid body

\(\mathbf{F}^{C}, \mathbf{F}^{C^{*}}\) :

Resultant active force and inertia force in rigid body C

\(\mathbf{F}_i \) :

Resultant of all contact forces and/or distance forces

\(\mathbf{I}\) :

Central inertia dyadic of a rigid body

\(\mathbf{n}_i \;(i=x,y,z)\) :

The Newtonian unit vector used in the rolling coin

\(\mathbf{r}_i \) :

Position vector

\(\mathbf{T}^{C}, \mathbf{T}^{C^{*}}\) :

Resultant active torque and inertia torque whose line of action passes through \(C^{*}\)

\(\mathbf{v}^{C^{*}}\) :

Velocity of mass center of rigid body C

\(\mathbf{v}_i \) :

Velocity of particle \(P_i \)

\(\tilde{\mathbf{v}}_r^{C^{*}}, \tilde{\mathbf{v}}_t^{C^{*}} \) :

Vector functions of \(q_i (i=1,\ldots ,n)\) and t for a rigid body C

\(\tilde{\mathbf{v}}_r^{P_i }, \tilde{\mathbf{v}}_t^{P_i } \) :

Vector functions of \(q_i (i=1,\ldots ,n)\) and t for a particle \(P_i \)

\(\varvec{\upalpha }^{C}\) :

Angular acceleration of a rigid body C

\(\alpha _i (i=1, 2, 3)\) :

Components of angular acceleration

\(\nu \) :

number of particles

\(\varvec{\upomega }^{C}\) :

Angular velocity of rigid body C

\(\omega _i (i=1, 2, 3)\) :

Components of angular velocity

\(\tilde{\varvec{\upomega }}_r^C, \tilde{\varvec{\upomega }}_t^C \) :

Angular velocities of \(q_i (i=1,\ldots ,n)\) and t for rigid body C

\(i, r,\;s,\;t\) :

Indices

References

  1. Kane, T.R.: Analytical Elements of Mechanics, vol. 2, 2nd edn. Academic Press, New York, London (1959)

  2. Kane, T.R.: Dynamics of nonholonomic systems. ASME J. Appl. Mech. 28, 574–578 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kane, T.R., Wang, C.F.: On the derivation of equations of motion. J. Soc. Ind. Appl. Math. 13, 487–492 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kane, T.R.: Dynamics. Holt, Rinehart, and Winston, New York (1968)

    MATH  Google Scholar 

  5. Kane, T.R., Levinson, D.A.: Formulation of equations of motion for complex spacecraft. J. Guid. Control 3, 99–112 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kane, T.R.: Formulation of dynamical equations of motion. Am. J. Phys. 51, 974–977 (1983)

    Article  Google Scholar 

  7. Kane, T.R., Levinson, D.A.: The multibody dynamics. ASME J. Appl. Mech. 50, 1071–1078 (1983)

    Article  MATH  Google Scholar 

  8. Kane, T.R., Levinson, D.A.: The use of Kane’s dynamical equations in robotics. Int. J. Robot. Res. 2, 3–21 (1983)

    Article  Google Scholar 

  9. Kane, T.R., Likins, P.W., Levinson, D.A.: Spacecraft Dynamics. McGraw-Hill Book Co., New York (1983)

    Google Scholar 

  10. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw-Hill Book Co., New York (1985)

    Google Scholar 

  11. Radetsky, P.: The man who mastered motion. Science 86, 52–60 (1985)

    Google Scholar 

  12. Huston, R.L.: Multibody Dynamics. Butterworth-Heinemann, Inc., Oxford (1990)

    MATH  Google Scholar 

  13. Loduha, T.A., Ravani, B.: On first-order decoupling of equations of motion for constrained dynamical systems. ASME J. Appl. Mech. 62, 216–222 (1995)

    Article  MATH  Google Scholar 

  14. Chen, B.: Analytical Dynamics. Taiwan Advanced Education Inc., Taipei (1988). (in Chinese)

  15. Desloge, E.A.: A comparison of Kane’s equation of motion and the Gibbs–Appell equations of motion. Am. J. Phys. 54, 470–472 (1986)

    Article  Google Scholar 

  16. Desloge, E.A.: Relationship between Kane’s equations and the Gibbs–Appell equations. J. Guid. Control Dyn. 10, 120–122 (1987)

    Article  Google Scholar 

  17. Borri, M., Bottasso, C., Mantegazza, P.: Equivalence of Kane’s and Maggi’s equations. Meccanica 25, 272–274 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kane, T.R.: Rebuttal to ‘A comparison of Kane’s equation of motion and the Gibbs–Appell equations of motion’. Am. J. Phys. 54, 472 (1986)

    Article  Google Scholar 

  19. Levinson, D.A.: Rebuttal to ‘Equivalence of Kane’s and Maggi’s equations’. Meccanica 27, 63–64 (1992)

    Article  Google Scholar 

  20. Wang, L.S., Pao, Y.H.: Jourdain’s variational equation and Appell’s equations of motion for nonholonomic dynamical systems. Am. J. Phys. 71, 72–82 (2003)

    Article  Google Scholar 

  21. Ginsberg, J.H.: Advanced Engineering Dynamics. Harper and Row Publishers Inc., New York (1988)

    MATH  Google Scholar 

  22. Chen, Y.H.: Equations of motion of mechanical systems under servo constraints: the Maggi approach. Mechatronics 18, 208–217 (2008)

    Article  Google Scholar 

  23. Passerello, C.E., Huston, R.L.: Another look at nonholonomic systems. ASME J. Appl. Mech. 40, 101–104 (1973)

    Article  MATH  Google Scholar 

  24. Desloge, E.A.: Efficacy of the Gibbs–Appell method for generating equations of motion for complex systems. J. Guid. 12, 114–116 (1989)

    Article  Google Scholar 

  25. Mitiguy, P.C., Kane, T.R.: Motion variables leading to efficient equations of motion. Int. J. Robot. Res. 15, 522–532 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Council of Taiwan, the Republic of China, under Grant NSC 87-2212-E-344-001 and is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Te Wen Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, T.W. First-order form, Lagrange’s form, and Gibbs–Appell’s form of Kane’s equations. Acta Mech 227, 1885–1901 (2016). https://doi.org/10.1007/s00707-016-1611-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1611-8

Keywords

Navigation