Skip to main content
Log in

Effect of special rotational deformation on dislocation emission from interface collinear crack tip in nanocrystalline bi-materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The work is devoted to investigate the interaction between the special rotational deformation and interface collinear cracks in nanocrystalline bi-materials. As an illustrative example, the effect of the disclination quadrupole produced by the special rotational deformation on the emission of lattice dislocation from a finite interfacial crack tip in nanocrystalline bi-material is explored theoretically using the complex variable method. The complex form expression of dislocation force and the critical stress intensity factors for the first edge dislocation emission under remote mode I loadings and mode II loadings are deduced. And the influences of material properties, grain size, disclination strength, disclination location and orientation, special rotational deformation orientations, and crack length on the critical stress intensity factors are discussed in detail. The results show that the special rotational deformation and the relative shear modulus of the upper the lower half plane have great effect on the lattice dislocation emission from the interface collinear crack tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, L.L., Zheng, X.J.: Influence of interface energy and grain boundary on the elastic modulus of nanocrystalline material. Acta Mech. 213(3), 223–234 (2010)

    Article  MATH  Google Scholar 

  2. Liu, Y.G., Ju, R.Y.: A theoretical model for studying the mechanical properties of bimodal nanocrystalline materials. J. Mater. Res. 30(11), 1836–1843 (2015)

    Article  Google Scholar 

  3. Shen, L.M.: Combined grain size, strain rate and loading condition effects on mechanical behaviour of nanocrystalline Cu under high strain rates. Acta Mech Sin. 28(4), 1125–1132 (2012)

    Article  MATH  Google Scholar 

  4. Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041–4065 (2007)

    Article  Google Scholar 

  5. Wang, P., Yang, X.H., Tian, X.B.: Fracture behavior of precracked nanocrystalline materials with grain size gradients. J. Mater. Res. 30(5), 709–716 (2015)

    Article  Google Scholar 

  6. Meyers, M.A., Mishra, A., Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog Mater Sci. 51, 427–556 (2006)

    Article  Google Scholar 

  7. Yu, M., Fang, Q.H., Feng, H., Liu, Y.W.: Effect of cooperative grain boundary sliding and migration on dislocation emitting from a semi-elliptical blunt crack tip in nanocrystalline solids. Acta Mech. 225(7), 2005–2019 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alizada, A.N., Sofiyev, A.H., Kuruoglu, N.: Stress analysis of a substrate coated by nanomaterials with vacancies subjected to uniform extension load. Acta Mech. 223, 1371–1383 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yu, M., Fang, Q.H., Feng, H., Liu, Y.W.: Effect of special rotational deformation on dislocation emission from a semi-elliptical blunt crack tip in nanocrystalline solids. J. Mater. Res. 28(6), 798–805 (2013)

    Article  Google Scholar 

  10. Zhou, K., Wu, M.S., Nazarov, A.A.: Relaxation of a disclinated tricrystalline nanowire. Acta Mater. 56, 5828–5836 (2008)

    Article  Google Scholar 

  11. Voyiadjis, George Z., Deliktas, Babur: Modeling of strengthening and softening in inelastic nanocrystalline materials with reference to the triple junction and grain boundaries using strain gradient plasticity. Acta Mech. 213(1–2), 3–26 (2010)

    Article  MATH  Google Scholar 

  12. Khan, A.S., Farrok, B., Takacs, L.: Effect of grain refinement on mechanical properties of ball-milled bulk aluminum. Mater. Sci. Eng. A 489, 77–84 (2008)

    Article  Google Scholar 

  13. Farrok, B., Khan, A.S.: Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: synthesis, experiment, and constitutive modeling. Int. J. Plast. 25(5), 715–732 (2009)

    Article  MATH  Google Scholar 

  14. Aifantis, E.C.: Deformation and failure of bulk nanograined and UFG materials. Mater. Sci. Eng. A 530, 190–201 (2009)

    Article  Google Scholar 

  15. Barai, P., Weng, G.J.: Mechanics of very fine-grained nanocrystalline materials with contribution from grain interior, GB zone, and grain boundary sliding. Int. J. Plast. 25, 2410–2434 (2009)

    Article  Google Scholar 

  16. Xia, S.H., Wang, J.T.: A micromechanical model of toughening behavior in the dual-phase composite. Int. J. Plast. 26, 1442–1460 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Barai, P., Weng, G.J.: Mechanics of a nanocrystalline coating and grain-size dependence of its plastic strength. Mech Mater. 43, 496–504 (2011)

    Article  Google Scholar 

  18. Liu, Y.G., Zhou, J.Q., Shen, T.D., Hui, D.: Effects of ultrafine nanograins on the fracture toughness of nanocrystalline materials. J. Mater. Res. 26(14), 1734–1741 (2011)

    Article  Google Scholar 

  19. Rupert, T.J., Trelewicz, J.R., Schuh, C.A.: Grain boundary relaxation strengthening of nanocrystalline Ni–W alloys. J. Mater. Res. 27(9), 1285 (2012)

    Article  Google Scholar 

  20. Liu, Y.G., Zhou, J.Q., Shen, T.D.: A combined dislocation-cohesive zone model for fracture in nanocrystalline materials. J. Mater. Res. 27(4), 694–700 (2012)

    Article  Google Scholar 

  21. KOvid’ko, I.A., Sheinerman, A.G.: Special strain hardening mechanism and nanocrack generation in nanocrystalline materials. Appl. Phys. Lett. 90, 171927 (2007)

    Article  Google Scholar 

  22. Cheng, S., Ma, E., Wang, Y.M., Kecskes, L.J., Youssef, K.M., Koch, C.C., et al.: Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater. 53, 1521–1533 (2005)

    Article  Google Scholar 

  23. Youssef, K.M., Scattergood, R.O., Murty, K.L., Horton, J.A., Koch, C.C.: Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl. Phys. Lett. 87, 091904 (2005)

    Article  Google Scholar 

  24. Youssef, K.M., Scattergood, R.O., Murty, K.L., Koch, C.C.: Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility. Scr. Mater. 54, 251–256 (2006)

    Article  Google Scholar 

  25. Sergueeva, A.V., Mara, N.A., Mukherjee, A.K.: Grain boundary sliding in nanomaterials at elevated temperatures. J. Mater. Sci. 4, 1433–1438 (2007)

    Article  Google Scholar 

  26. Liu, L.L., Zhang, Y.S., Zhang, T.Y.: Strain relaxation in heteroepitaxial films by misfit twinning: I. Critical thickness. J. Appl. Phys. 101, 063501 (2007)

    Article  Google Scholar 

  27. Zhang, Y.S., Liu, L.L., Zhang, T.Y.: Strain relaxation in heteroepitaxial films by misfit twinning: II. Equilibrium morphology. J. Appl. Phys. 101, 063502 (2007)

    Article  Google Scholar 

  28. Zhang, Y.S., Liu, L.L., Zhang, T.Y.: Critical thickness for misfit twinning in an epilayer. Int. J. Solids Struct. 45, 3173–3191 (2008)

    Article  MATH  Google Scholar 

  29. Zhao, Y., Qian, J., Daemen, L.L., Pantea, C., Zhang, J., Voroninm, G.A., et al.: Enhancement of fracture toughness in nanostructured diamond–SiC composites. Appl. Phys. Lett. 84, 1356–1358 (2004)

    Article  Google Scholar 

  30. Kaminskii, A.A., Akchurin, M.S., Gainutdinov, R.V., et al.: Microhardness and fracture toughness of \(\text{Y}_{2}\text{O}_{3}\)- and \(\text{Y}_{3}\text{Al}_{5}\text{O}_{12}\)- based nanocrystalline laser ceramics. Crystallogr. Rep. 50, 569–573 (2005)

    Article  Google Scholar 

  31. Bobylev, S.V., Morozov, N.F., Ovid’ko, I.A.: Cooperative grain boundary sliding and migration process in nanocrystalline solids. Phys. Rev. Lett. 105, 055504 (2010)

    Article  Google Scholar 

  32. Ovid’ko, I.A., Sheinerman, A.G., Aifantis, E.C.: Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater. 59, 5023–5031 (2011)

    Article  Google Scholar 

  33. Feng, H., Fang, Q.H., Zhang, L.C., Liu, Y.W.: Effect of cooperative grain boundary sliding and migration on emission of dislocations from a crack tip in nanocrystalline materials. Mech. Mater. 61(15), 39–48 (2013)

    Article  Google Scholar 

  34. Yu, M., Fang, Q.H., Liu, Y.W., Xie, C.: The interaction between a piezoelectric screw dislocation dipole and an elliptic blunt crack in elliptical inhomogeneity. Mech. Adv. Mater. Struct. 22(5), 349–358 (2015)

    Article  Google Scholar 

  35. Zhou, K.: Elastic field and effective moduli of periodic composites with arbitrary inhomogeneity distribution. Acta Mech. 223(2), 293–308 (2012)

    Article  MATH  Google Scholar 

  36. Xiao, Z.M., Chen, B.J.: A screw dislocation interacting with a coated fiber. Mech. Mater. 32(8), 485–494 (2000)

    Article  Google Scholar 

  37. Zhao, Y.X., Zeng, X., Chen, C.P.: Elastic behavior of disclination dipole near nanotube with surface/interface effect. Chin. Phys. B. 23(3), 030202 (2014)

    Article  Google Scholar 

  38. Muskhelishvili, N.L.: Some Basic Problems of Mathematical Theory of Elasticity. Noordhoff, Leyden (1975)

    MATH  Google Scholar 

  39. Zhang, T.Y., Li, J.C.M.: Interaction of an edge dislocation with an interfacial crack. J. Appl. Phys. 72, 2215–2226 (1992)

    Article  Google Scholar 

  40. Fang, Q.H., Liu, Y.W., Jiang, C.P., Li, B.: Interaction of a wedge disclination dipole with interfacial cracks. Eng. Fract. Mech. 73, 1235–1248 (2006)

    Article  Google Scholar 

  41. Fang, Q.H., Feng, H., Liu, Y.W., Lin, S., Zhang, N.: Special rotational deformation effect on the emission of dislocations from a crack tip in deformed nanocrystalline solids. Int. J. Solids Struct. 11–12, 1406–1412 (2012)

    Article  Google Scholar 

  42. Yu, M., Fang, Q.H., Liu, Y.W., Xie, C.: The interaction between a piezoelectric screw dislocation dipole and an elliptic blunt crack in elliptical inhomogeneity. Mech. Adv. Mater. Struct. 22(5), 349–358 (2015)

    Article  Google Scholar 

  43. Zhou, K., Wu, M.S.: Elastic fields due to an edge dislocation in an isotropic film-substrate by the image method. Acta Mech. 211(3–4), 271–292 (2010)

    Article  MATH  Google Scholar 

  44. Zhao, Y.X., Fang, Q.H., Liu, Y.W.: Effect of nanograin boundary sliding on nanovoid growth by dislocation shear loop emission in nanocrystalline materials. Eur. J. Mech-A/Solids 49, 419–429 (2015)

    Article  Google Scholar 

  45. Zhao, Y.X., Fang, Q.H., Liu, Y.W.: Effect of cooperative nanograin boundary sliding and migration on dislocation emission from a blunt nanocrack tip in nanocrystalline materials. Philos. Mag. 94(7), 700–730 (2014)

    Article  Google Scholar 

  46. Hirth, J.P., Lothe, J.: Theory of Dislocations, 2nd edn. Wiley, New York (1964)

    Google Scholar 

  47. Creager, M., Paris, P.C.: Elastic field equations for blunt cracks with reference to stress corrosion cracking. Int. J. Fract. 3, 247–252 (1967)

    Article  Google Scholar 

  48. Rice, J.R., Thomson, R.: Ductile versus brittle behavior of crystals. Philos. Mag. 29, 73–80 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Fang, Q.H., Feng, H. et al. Effect of special rotational deformation on dislocation emission from interface collinear crack tip in nanocrystalline bi-materials. Acta Mech 227, 2011–2024 (2016). https://doi.org/10.1007/s00707-016-1604-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1604-7

Keywords

Navigation