Skip to main content
Log in

Theory of micropolar gyroelastic continua

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper is devoted to the dynamic modeling of micropolar gyroelastic continua and explores some of the modeling and analysis issues related to them. It can be considered as an extension of the previous studies on equivalent continuum modeling of truss structures with or without angular momentum devices. Assuming unrestricted or large attitude changes for the axes of the gyros and utilizing the micropolar theory of elasticity, the energy expressions and equations of motion for undamped micropolar gyroelastic continua are derived. Whereas the micropolar gyroelastic continuum model with extra coefficients and degrees of freedom is primarily developed to account for the asymmetric stress–strain analysis in the gyroelastic continua, it also proves to be beneficial for a more comprehensive representation of the actual gyroelastic structure. The dynamic equations of the general gyroelastic continua are reduced to the case of one-dimensional gyroelastic beams. Simplified micropolar beam torsion and bending theories are used to derive the governing dynamic equations of micropolar gyroelastic beams from Hamilton’s principle. A finite element model corresponding to the micropolar gyrobeams is built in MATLAB\({^{\circledR}}\) and is used in numerical examples to study the spectral and modal behavior of simply supported micropolar gyroelastic beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubrun, J., Margulies, G.: Gyrodampers for large space structures. Tech. Rep. No. 159171, National Aeronautics and Space Administration (NASA), Hampton, VA, USA (1979). http://ntrs.nasa.gov/search.jsp?R=19800019916 (NASA Contractor Report)

  2. Bathe, K.: Finite Element Procedures in Engineering Analysis. Prentice-Hall, Upper Saddle River (1982). http://books.google.ca/books?id=WYxwQgAACAAJ

  3. Brocato M., Capriz G.: Gyrocontinua. Int. J. Solids Struct. 38, 1089–1103 (2001). doi:10.1016/S0020-7683(00)00075-5

    Article  MATH  Google Scholar 

  4. Cosserat, E., Cosserat, F.: Théorie des corps déformables. A. Hermann et Fils, Paris, France (1909). http://jhir.library.jhu.edu/handle/1774.2/34209

  5. Damaren, C.: An optimal control formulation for lightly damped gyroelastic continua. M.A.Sc. thesis, Aerospace Science and Engineering Department, University of Toronto, Toronto, ON, Canada (1987). http://books.google.ca/books?id=F9XZNwAACAAJ

  6. D’Eleuterio, G.: Dynamics of gyroelastic vehicles. Tech. Rep. No. 300, Institute for Aerospace Studies (UTIAS), University of Toronto, Toronto, ON, Canada (1986). http://adsabs.harvard.edu/abs/1986dgv..book.....D

  7. D’Eleuterio G., Hughes P.: Dynamics of gyroelastic continua. J. Appl. Mech. Trans. ASME 51, 415–422 (1984). doi:10.1115/1.3167634

    Article  MATH  Google Scholar 

  8. Eringen A.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  9. Fathalilou M., Sadeghi M., Rezazadeh G.: Micro-inertia effects on the dynamic characteristics of micro-beams considering the couple stress theory. Mech. Res. Commun. 60, 74–80 (2014). doi:10.1016/j.mechrescom.2014.06.003

    Article  Google Scholar 

  10. Gauthier R., Jahsman W.: Bending of a curved bar of micropolar elastic material. Ser. J. Appl. Mech. Trans. ASME 43, 502–503 (1976). doi:10.1115/1.3423899

    Article  Google Scholar 

  11. Hassanpour, S.: Dynamics of gyroelastic continua. Ph.D. thesis, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, ON, Canada (2014). http://hdl.handle.net/10012/8289

  12. Hassanpour, S., Heppler, G.: Approximation of infinitesimal rotations in the calculus of variations. In: Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal, QC, Canada (2014). doi:10.1115/IMECE2014-39106

  13. Hassanpour, S., Heppler, G.: Dynamics of 3D micropolar gyroelastic beams. In: Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal, QC, Canada (2014). doi:10.1115/IMECE2014-39259

  14. Hassanpour, S., Heppler, G.: Dynamics of a 3D micropolar beam model. In: Proceedings of the ASME 2014 International Design Engineering Technical Conference and Computers and Information in Engineering Conference. Buffalo, NY, USA (2014). doi:10.1115/DETC2014-35453

  15. Hassanpour, S., Heppler, G.: Dynamics of micropolar gyroelastic materials. In: Proceedings of the 9th International Conference on Mechanics of Time-Dependent Materials. Montreal, QC, Canada (2014). www.polymtl.ca/mtdm/doc/051_Hassanpour_abstract2.pdf

  16. Hassanpour, S., Heppler, G.: Relationships between the micropolar and classical gyroelastic materials: a resolution for apparent inconsistencies in micropolar elasticity. In: Proceedings of the 9th International Conference on Mechanics of Time-Dependent Materials. Montreal, QC, Canada (2014). www.polymtl.ca/mtdm/doc/052_Hassanpour_abstract2.pdf

  17. Hassanpour, S., Heppler, G.: Step-by-step simplification of the micropolar elasticity theory to the couple-stress and classical elasticity theories. In: Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal, QC, Canada (2014). doi:10.1115/IMECE2014-39216

  18. Hassanpour, S., Heppler, G.: Uncomplicated torsion and bending theories for micropolar elastic beams. In: Proceedings of the 11th World Congress on Computational Mechanics. Barcelona, Spain (2014). www.wccm-eccm-ecfd2014.org/admin/files/filePaper/p3142.pdf

  19. Hassanpour, S., Heppler, G.: Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations. Math. Mech. Solids (2015). doi:10.1177/1081286515581183

  20. Hassanpour S., Heppler G.: Dynamics of 3D Timoshenko gyroelastic beams with large attitude changes for the gyros. Acta Astronaut. 118, 33–48 (2016). doi:10.1016/j.actaastro.2015.09.012

    Article  Google Scholar 

  21. Hodge, P.: Continuum mechanics. McGraw-Hill, New York (1970). http://books.google.ca/books?id=W9oQAQAAIAAJ

  22. Huang F., Yan B., Yan J., Yang D.: Bending analysis of micropolar elastic beam using a 3-D finite element method. Int. J. Eng. Sci. 38, 275–286 (2000). doi:10.1016/S0020-7225(99)00041-5

    Article  MATH  Google Scholar 

  23. Hughes, P.: Spacecraft attitude dynamics. Wiley, New York (1986). http://books.google.ca/books?id=BJtTAAAAMAAJ

  24. Ieşan D.: Torsion of micropolar elastic beams. Int. J. Eng. Sci. 9, 1047–1060 (1971). doi:10.1016/0020-7225(71)90001-2

    Article  MATH  Google Scholar 

  25. Irgens F.: Continuum Mechanics. Springer, Berlin (2008). doi:10.1007/978-3-540-74298-2

    Google Scholar 

  26. Krishna Reddy G., Venkatasubramanian N.: On the flexural rigidity of a micropolar elastic circular cylinder. J. Appl. Mech. Trans. ASME 45(2), 429–431 (1978). doi:10.1115/1.3424317

    Article  Google Scholar 

  27. Leissa A.W.: On a curve veering aberration. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 25, 99–111 (1974). doi:10.1007/BF01602113

    Article  MATH  Google Scholar 

  28. Ma H., Gao X., Reddy J.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008). doi:10.1016/j.jmps.2008.09.007

    Article  MathSciNet  MATH  Google Scholar 

  29. MathWorks: MATLAB. 64-bit (win64), version 8.1.604 (R2013a). The MathWorks Inc., Natick, MA, USA (2013). http://www.mathworks.com/ (Computer software)

  30. Mora R., Waas A.: Evaluation of the micropolar elasticity constants for honeycombs. Acta Mech. 192, 1–16 (2007). doi:10.1007/s00707-007-0446-8

    Article  MATH  Google Scholar 

  31. Noor A., Nemeth M.: Micropolar beam models for lattice grids with rigid joints. Comput. Methods Appl. Mech. Eng. 21, 249–263 (1980). doi:10.1016/0045-7825(80)90034-1

    Article  MATH  Google Scholar 

  32. Nowacki, W.: Theory of Asymmetric Elasticity (translated by H. Zorski). Polish Scientific Publishers (PWN) and Pergamon Press, Warsaw (Warszawa), Oxford (1986). http://books.google.ca/books?id=yfVQAAAAMAAJ

  33. Palmov V.: Fundamental equations of the theory of asymmetric elasticity. J. Appl. Math. Mech. 28, 496–505 (1964). doi:10.1016/0021-8928(64)90092-9

    Article  MathSciNet  Google Scholar 

  34. Peck, M., Cavender, A.: Structural tuning through embedded angular momentum. In: Collection of Technical Papers, 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, vol. 2, pp. 1462–1469. Norfolk, VA, USA (2003). doi:10.2514/6.2003-1560

  35. Perkins N., Mote C.: Comments on curve veering in eigenvalue problems. J. Sound Vib. 106, 451–463 (1986). doi:10.1016/0022-460X(86)90191-4

    Article  Google Scholar 

  36. Pierre C.: Mode localization and eigenvalue loci veering phenomena in disordered structures. J. Sound Vib. 126, 485–502 (1988). doi:10.1016/0022-460X(88)90226-X

    Article  Google Scholar 

  37. Potapenko S., Shmoylova E.: Weak solutions of the problem of torsion of micropolar elastic beams. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 61, 529–536 (2010). doi:10.1007/s00033-009-0018-y

    Article  MathSciNet  MATH  Google Scholar 

  38. Ramezani S., Naghdabadi R., Sohrabpour S.: Analysis of micropolar elastic beams. Eur. J. Mech. A/Solids 28(2), 202–208 (2009). doi:10.1016/j.euromechsol.2008.06.006

    Article  MATH  Google Scholar 

  39. Salehian, A.: Micropolar continuum modeling of large space structures with flexible joints and thermal effects: theory and experiment. Ph.D. thesis, Mechanical Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA (2008). http://scholar.lib.vt.edu/theses/available/etd-02102008-231624/

  40. Tekoğlu C., Onck P.: Size effects in two-dimensional Voronoi foams: a comparison between generalized continua and discrete models. J. Mech. Phys. Solids 56, 3541–3564 (2008). doi:10.1016/j.jmps.2008.06.007

    Article  MATH  Google Scholar 

  41. Timoshenko, S., Goodier, J.: Theory of Elasticity. McGraw-Hill Book Company, New York (1951). http://books.google.ca/books?id=11ISAAAAIAAJ

  42. Todhunter, I.: A history of the theory of elasticity and of the strength of materials from Galilei to the present time. Cambridge University Press, Cambridge (1893). http://books.google.ca/books?id=UdAEAAAAYAAJ

  43. Voigt W.: Theoretische Studien über die Elastizitätsverhältnisse der Krystalle. Abhandlungen der Mathematischen Classe der Königlichen Gesellschaft der Wissenschaften zu Göttingen 34, 3–51 (1887)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soroosh Hassanpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanpour, S., Heppler, G.R. Theory of micropolar gyroelastic continua. Acta Mech 227, 1469–1491 (2016). https://doi.org/10.1007/s00707-016-1573-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1573-x

Keywords

Navigation