Advertisement

Acta Mechanica

, Volume 227, Issue 5, pp 1225–1250 | Cite as

A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis

  • Chien H. Thai
  • A. J. M. Ferreira
  • M. Abdel Wahab
  • H. Nguyen-Xuan
Original Paper

Abstract

This paper presents a generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates. We exploit a higher-order shear deformation theory in each layer such that the continuity of the displacement and transverse shear stresses at the layer interfaces is ensured. Thanks for enforcing the continuity of the displacement and transverse shear stresses at an inner-laminar layer, the minimum number of variables is retained from the present theory in comparison with other layerwise theories. The method requires only five variables, the same as what obtained from the first- and higher-order shear deformation theories. In comparison with the shear deformation theories based on the equivalent single layer, the present theory is capable of producing a higher accuracy for inner-laminar layer shear stresses. The free boundary conditions of transverse shear stresses at the top and bottom surfaces of the plate are fulfilled without any shear correction factors. The discrete system equations are derived from the Galerkin weak form, and the solution is obtained by isogeometric analysis (IGA). The discrete form requires the C1 continuity of the transverse displacement, and hence NURBS basis functions in IGA naturally ensure this condition. The laminated composite and sandwich plates with various geometries, aspect ratios, stiffness ratios and boundary conditions are studied. The obtained results are compared with the 3D elasticity solution, the analytical as well as numerical solutions based on various plate theories.

Keywords

Laminate Plate Sandwich Plate Shear Deformation Theory Laminate Composite Plate Isogeometric Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldenvaizer A.N.: Theory of Thin Elastic Shells, International Series of Monograph in Aeronautics and Astronautics. Pergamon Press, New York (1961)Google Scholar
  2. 2.
    Carrera E.: A study of transverse normal stress effect on vibration of multilayered plates and shell. J. Sound Vib. 225, 803–829 (1999)CrossRefGoogle Scholar
  3. 3.
    Carrera E.: Transverse normal stress effects in multilayered plate. J. Appl. Mech. 66, 1004–1012 (1999)CrossRefGoogle Scholar
  4. 4.
    Reissner E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. Trans. ASME 12, 69–77 (1945)MathSciNetMATHGoogle Scholar
  5. 5.
    Mindlin R.D.: Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. Trans. ASME 18, 31–38 (1951)MATHGoogle Scholar
  6. 6.
    Ferreira A.J.M., Castro L.M.S., Bertoluzza S.: A high order collocation method for the static and vibration analysis of composite plates using a first-order theory. Compos. Struct. 34, 627–636 (2003)Google Scholar
  7. 7.
    Ambartsumian S.A.: On the theory of bending plates. Izv Otd Tech Nauk ANSSSR 5, 269–277 (1958)Google Scholar
  8. 8.
    Reissner E.: On transverse bending of plates including the effects of transverse shear deformation. Int. J. Solids Struct. 25, 495–502 (1975)MATHGoogle Scholar
  9. 9.
    Levinson M.: An accurate simple theory of statics and dynamics of elastic plates. Mech. Res. Commun. 7, 343–350 (1980)CrossRefMATHGoogle Scholar
  10. 10.
    Reddy J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)CrossRefMATHGoogle Scholar
  11. 11.
    Nguyen-Xuan, H., Thai, Chien.H., Nguyen-Thoi, T.: Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory. Compos. Part B 55, 558–574 (2013)Google Scholar
  12. 12.
    Soldatos K.P.: A transverse shear deformation theory for homogenous monoclinic plates. Acta Mech. 94, 195–220 (1992)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Touratier M.: An efficient standard plate theory. Int. J. Eng. Sci. 29, 745–752 (1991)CrossRefMATHGoogle Scholar
  14. 14.
    Arya H., Shimpi R.P., Naik N.K.: A zigzag model for laminated composite beams. Compos. Struct. 56, 21–24 (2002)CrossRefGoogle Scholar
  15. 15.
    Thai, Chien.H., Ferreira, A.J.M., Rabczuk, T., Bordas, S.P.A., Nguyen-Xuan, H.: Isogeometric analysis of laminated composite and sandwich plates using a newinverse trigonometric shear deformation theory. Eur. J.Mech.A/Solids 43, 89–108 (2014)Google Scholar
  16. 16.
    Karama M., Afaq K.S., Mistou S.: Mechanical behavior of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 40, 1525–1546 (2003)CrossRefMATHGoogle Scholar
  17. 17.
    Aydogdu M.: A new shear deformation theory for laminated composite plates. Compos. Struct. 89, 94–101 (2009)CrossRefGoogle Scholar
  18. 18.
    Senthilnathan N.R., Lim S.P., Lee K.H., Chow S.T.: Buckling of shear-deformable plates. AIAA J. 25, 1268–1271 (1987)CrossRefGoogle Scholar
  19. 19.
    Thai H.T., Choi D.H.: A refined plate theory for functionally graded plates resting on elastic foundation. Compos. Sci. Technol. 71, 1850–1858 (2011)CrossRefGoogle Scholar
  20. 20.
    Srinivas S.: A refined analysis of composite laminates. J. Sound Vib. 30, 495–507 (1973)CrossRefMATHGoogle Scholar
  21. 21.
    Reddy J.N.: A generalization of two-dimensional theories of laminated composite plates. Commun. Appl. Numer. Methods 3, 173–180 (1987)CrossRefMATHGoogle Scholar
  22. 22.
    Murakami H.: Laminated composite plate theory with improved in-plane responses. J. Appl. Mech. 53, 661–666 (1986)CrossRefMATHGoogle Scholar
  23. 23.
    Mau S.T.: A refined laminate plate theory. J. Appl. Mech. 40, 606–607 (1973)CrossRefGoogle Scholar
  24. 24.
    Chou P.C., Corleone J.: Transverse shear in laminated plate theories. Am. Inst. Aeronaut. Astronaut. 11, 1333–1336 (1973)CrossRefGoogle Scholar
  25. 25.
    Di Sciuva M.: An improved shear-deformation theory for moderately thick multilayered shells and plates. J. Appl. Mech. 54, 589–597 (1987)CrossRefMATHGoogle Scholar
  26. 26.
    Toledano A., Murakami H.: A composite plate theory for arbitrary laminate configuration. J. Appl. Mech. 54, 181–189 (1987)CrossRefMATHGoogle Scholar
  27. 27.
    Ren J.G.: A new theory of laminated plate. Compos. Sci. Technol. 26, 225–239 (1986)CrossRefGoogle Scholar
  28. 28.
    Di Sciuva M.: Bending, vibration and buckling of simply-supported thick multilayered orthotropic plates: an evaluation of a new displacement model. J. Sound Vib. 105, 425–442 (1986)CrossRefGoogle Scholar
  29. 29.
    Carrera E.: C0 Reissner–Mindlin multilayered plate elements including Zig-Zag and interlaminar stress continuity. Int. J. Numer. Methods Eng. 39, 1797–1820 (1996)CrossRefMATHGoogle Scholar
  30. 30.
    Carrera E.: Evaluation of layer-wise mixed theories for laminated plate analysis. Am. Inst. Aeronaut. Astronaut. 36, 830–839 (1998)CrossRefGoogle Scholar
  31. 31.
    Rossi R.E., Bambill D.V., Laura A.A.: Vibrations of a rectangular orthotropic plate with a free edge: comparison of analytical and numerical results. Ocean Eng. 25, 521–527 (1998)CrossRefGoogle Scholar
  32. 32.
    Reddy J.N., Robbins D.H. Jr: Theories and computational models for laminated composite laminates. Appl. Mech. Rev. 47, 147–169 (1994)CrossRefGoogle Scholar
  33. 33.
    Roque C.M.C., Ferreira A.J.M., Jorge R.M.N.: Modelling of composite and sandwich plates by a trigonometric layerwise deformation theory and radial basis functions. Compos. Part B 36, 559–572 (2005)CrossRefGoogle Scholar
  34. 34.
    Hughes T.J.R., Cottrell J.A., Bazilevs Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Cottrell J.A., Hughes T.J.R., Bazilevs Y.: Isogeometric Analysis Toward Integration of CAD and FEA. Wiley, Berlin (2009)CrossRefGoogle Scholar
  36. 36.
    Cottrell J.A., Reali A., Bazilevs Y., Hughes T.J.R.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195, 5257–5296 (2006)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Weeger O., Wever U., Simeon B.: Isogeometric analysis of nonlinear Euler–Bernoulli beam vibrations. Nonlinear Dyn. 72, 813–835 (2013)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Veiga L., Lovadina C., Reali A.: Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods. Comput. Methods Appl. Mech. Eng. 241–244, 38–51 (2012)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Shojae S., Izadpanah E., Valizade N., Kiendl J.: Free vibration analysis of thin plates by using a NURBS-based isogeometric approach. Finite Elem. Anal. Des. 61, 23–34 (2012)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Thai Chien, H., Rabczuk, T., Nguyen-Xuan, H.: Arotation-free isogeometric analysis for composite sandwich thin plates. Int. J. Compos. Mater. 3, 10–18 (2013)Google Scholar
  41. 41.
    Thai Chien, H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T.-H., Nguyen-Thoi, T., Rabczuk, T.: Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS-based isogeometric approach. Int. J. Numer. Methods Eng. 91, 571–603 (2012)Google Scholar
  42. 42.
    Valizadeh N., Natarajan S., Gonzalez-Estrada O.A., Rabczuk T., Bui T.Q., Bordas S.: NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Compos. Struct. 99, 309–326 (2013)CrossRefGoogle Scholar
  43. 43.
    Kapoor H., Kapania R.K.: Geometrically nonlinear NURBS isogeometric finite element analysis of laminated composite plates. Compos. Struct. 94, 3434–3447 (2012)CrossRefGoogle Scholar
  44. 44.
    Thai, Chien H., Nguyen-Xuan, H., Bordas, S.P.A., Nguyen-Thanh, N., Rabczuk, T.: Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory. Mech. Adv. Mater. Struct. 22, 451–469 (2015)Google Scholar
  45. 45.
    Tran, Loc V., Thai, Chien H., Nguyen-Xuan, H.: An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates. Finite Elem. Anal. Des. 73, 65–76 (2013)Google Scholar
  46. 46.
    Thai, Chien H., Kulasegaram, S., Tran, Loc V., Nguyen-Xuan, H.: Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach. Comput. Struct. 141, 94–112 (2014)Google Scholar
  47. 47.
    Guo Y., Nagy A., Grdal Z.: A layerwise theory for laminated composites in the framework of isogeometric analysis. Compos. Struct. 107, 447–457 (2014)CrossRefGoogle Scholar
  48. 48.
    Thai, Chien.H., Ferreira, A.J.M., Carrera, E., Nguyen-Xuan, H.: Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory. Compos. Struct. 104, 196–214 (2013)Google Scholar
  49. 49.
    Kiendl J., Bletzinger K.U., Linhard J., Wüchner R.: Isogeometric shell analysis with Kirchhoff–Love elements. Comput. Methods Appl. Mech. Eng. 198, 3902–3914 (2009)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Kiendl J., Bazilevs Y., Hsu M., Wüchner R., Bletzinger K.U.: The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Eng. 199, 2403–2416 (2010)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Benson D.J., Bazilevs Y., Hsu M.C., Hughes T.J.R.: Isogeometric shell analysis: the Reissner–Mindlin shell. Comput. Methods Appl. Mech. Eng. 199, 276–289 (2010)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Benson D.J., Bazilevs Y., Hsu M.C., Hughes T.J.R.: A large deformation, rotation-free, isogeometric shell. Comput. Methods Appl. Mech. Eng. 200, 1367–1378 (2011)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Reddy J.N.: Mechanics of Laminated Composite Plates and Shells. Theory and Analysis, 2nd edn. CRC Press, New York (2004)Google Scholar
  54. 54.
    Pandit M.K., Sheikh A.H., Singh B.N.: An improved higher order zigzag theory for the static analysis of laminated sandwich plate with soft core. Finite Elem. Anal. Des. 44, 602–610 (2008)CrossRefGoogle Scholar
  55. 55.
    Liew K.M., Huang Y.Q., Reddy J.N.: Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method. Comput. Methods Appl. Mech. Eng. 192, 2203–2222 (2003)CrossRefMATHGoogle Scholar
  56. 56.
    Chen X.L., Liu G.R., Lim S.P.: An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape. Compos. Struct. 59, 279–289 (2003)CrossRefGoogle Scholar
  57. 57.
    Noor A.K., Peters J.M., Burton W.S.: Three-dimensional solutions for initially stressed structural sandwiches. J. Eng. Mech. (ASCE) 120, 284–303 (1994)CrossRefGoogle Scholar
  58. 58.
    Auricchio F., Veiga F.B., Buffa A., Lovadina C., Reali A., Sangalli G.: A fully locking-free isogeometric approach for plane linear elasticity problems: a stream function formulation. Comput. Methods Appl. Mech. Eng. 197, 160–172 (2007)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Pagano N.J.: Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater. 4, 20–34 (1970)Google Scholar
  60. 60.
    Reddy J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)CrossRefMATHGoogle Scholar
  61. 61.
    Akhras G., Cheung M.S., Li W.: Finite strip analysis for anisotropic laminated composite plates using higher-order deformation theory. Comput. Struct. 52, 471–477 (1994)CrossRefMATHGoogle Scholar
  62. 62.
    Ferreira A.J.M., Roque C.M.C., Martins P.A.L.S.: Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method. Compos. Part B 34, 627–636 (2003)CrossRefGoogle Scholar
  63. 63.
    Ferreira A.J.M.: Analysis of composite plates using a layerwise theory and multiquadrics discretization. Mech. Adv. Mater. Struct. 12, 99–112 (2005)CrossRefGoogle Scholar
  64. 64.
    Ferreira A.J.M., Fasshauer G.E., Batra R.C., Rodrigues J.D.: Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter. Compos. Struct. 86, 328–343 (2008)CrossRefGoogle Scholar
  65. 65.
    Roque C.M.C., Ferreira A.J.M., Jorge R.M.N.: Modelling of composite and sandwich plates by a trigonometric layerwise deformation theory and radial basis functions. Compos. Part B 36, 559–572 (2005)CrossRefGoogle Scholar
  66. 66.
    Wang, X., Shi, G.: A refined laminated plate theory accounting for the third-order shear deformation and interlaminar transverse stress continuity. Appl. Math. Model. 2015. doi: 10.1016/j.apm.2015.01.030
  67. 67.
    Srinivas S.: A refined analysis of composite laminates. J. Sound Vib. 30, 495–507 (1973)CrossRefMATHGoogle Scholar
  68. 68.
    Pandya B.N., Kant T.: Higher-order shear deformable theories for flexure of sandwich plates-finite element evaluations. Int. J. Solids Struct. 24, 419–451 (1988)CrossRefMATHGoogle Scholar
  69. 69.
    Mantari, J.L., Oktem, A.S., Soares, C.G.: A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates. Int. J. Solids Struct. 49, 43–53 (2012)Google Scholar
  70. 70.
    Grover, N., Maiti, D.K., Singh, B.N.: A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates. Compos. Struct. 95, 667–675 (2013)Google Scholar
  71. 71.
    Chalak H.D., Chakrabarti A., Iqbal M.A., Sheikh A.H.: An improved C0 FE model for the analysis of laminated sandwich plate with soft core. Finite Elem. Anal. Des. 56, 20–31 (2012)CrossRefGoogle Scholar
  72. 72.
    Ramtekkar G.S., Desai Y.M., Shah A.H.: Application of a three dimensional mixed finite element model to the flexure of sandwich plate. Compos. Struct. 81, 2383–2398 (2003)CrossRefGoogle Scholar
  73. 73.
    Kant T., Swaminathan K.: Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory. Compos. Struct. 56, 329–344 (2002)CrossRefGoogle Scholar
  74. 74.
    Khdeir A.: Analysis of symmetric cross-ply elastic plates using a higher-order theory, part II: buckling and free vibration. Compos. Struct. 9, 259–277 (1988)CrossRefGoogle Scholar
  75. 75.
    Reddy J.N.: Mechanics of Laminated Composite Plates. CRC Press, New York (1997)MATHGoogle Scholar
  76. 76.
    Ferreira A.J.M., Castro L.M.S., Bertoluzza S.: A high order collocation method for the static and vibration analysis of composite plates using a first-order theory. Compos. Struct. 89, 424–432 (2009)CrossRefGoogle Scholar
  77. 77.
    Ferreira A.J.M.: A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates. Compos. Struct. 59, 385–392 (2003)CrossRefGoogle Scholar
  78. 78.
    Zhen W., Wanji C.: Free vibration of laminated composite and sandwich plates using global-local higher-order theory. J. Sound Vib. 298, 333–349 (2006)CrossRefGoogle Scholar
  79. 79.
    Wu C.P., Chen W.Y.: Vibration and stability of laminated plates based on a local higher-order plate theory. J. Sound Vib. 177, 503–520 (1994)CrossRefMATHGoogle Scholar
  80. 80.
    Matsunaga H.: Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory. Compos. Struct. 48, 231–244 (2000)CrossRefGoogle Scholar
  81. 81.
    Cho K.N., Bert C.W., Striz A.G.: Free vibration of laminated rectangular plates analyzed by higher-order individual-layer theory. J. Sound Vib. 145, 429–442 (1991)CrossRefGoogle Scholar
  82. 82.
    Ferreira A.J.M., Fasshauer G.E.: Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method. Comput. Methods Appl. Mech. Eng. 196, 134–146 (2006)CrossRefMATHGoogle Scholar
  83. 83.
    Noor, A.K., Mathers, M.D.: Shear-flexible finite element method of laminated composite plate. Technical report, NASA (1975)Google Scholar
  84. 84.
    Liu L., Chua L.P., Ghista D.N.: Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates. Compos. Struct. 78, 58–69 (2007)CrossRefGoogle Scholar
  85. 85.
    Phan N.D., Reddy J.N.: Analysis of laminated composite plates using a higher-order shear deformation theory. Int. J. Numer. Methods Eng. 21, 2201–2219 (1985)CrossRefMATHGoogle Scholar
  86. 86.
    Khdeir A.A., Librescu L.: Analysis of symmetric cross-ply elastic plates using a higher order theory: Part II: buckling and free vibration. Compos. Struct. 9, 259–277 (1988)CrossRefGoogle Scholar
  87. 87.
    Chakrabarti A., Sheikh A.H.: Buckling of laminated composite plates by a new element based on higher order shear deformation theory. Mech. Compos. Mater. Struct. 10, 303–317 (2003)CrossRefGoogle Scholar
  88. 88.
    Reddy J.N., Phan N.D.: Stability and vibration of isotropic, orthotropic and laminated plates according to a higher order shear deformation theory. J. Sound Vib. 89, 157–170 (1985)CrossRefMATHGoogle Scholar
  89. 89.
    Sarah B., Kant T.: Two shear deformable finite element models for buckling analysis of skew fiber-reinforced composite and sandwich panels. Compos. Struct. 46, 115–124 (1999)CrossRefGoogle Scholar
  90. 90.
    Cetkovic M., Vuksanovic D.: Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model. Compos. Struct. 88, 219–227 (2009)CrossRefGoogle Scholar
  91. 91.
    Fares M.E., Zenkour A.M.: Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories. Compos. Struct. 44, 279–287 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Chien H. Thai
    • 1
    • 2
  • A. J. M. Ferreira
    • 3
  • M. Abdel Wahab
    • 4
  • H. Nguyen-Xuan
    • 5
    • 6
  1. 1.Division of Computational MechanicsTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Civil EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Departamento de Engenharia Mecanica, Faculdade de EngenhariaUniversidade do PortoPortoPortugal
  4. 4.Laboratory Soete, Faculty of Engineering and ArchitectureGhent UniversityGhentBelgium
  5. 5.Center for Interdisciplinary Research in Technology (CIRTech)Ho Chi Minh City University of Technology (HUTECH)Ho Chi Minh CityVietnam
  6. 6.Department of Architectural EngineeringSejong UniversitySeoulSouth Korea

Personalised recommendations