Skip to main content
Log in

Anisotropic separable free energy functions for elastic and non-elastic solids

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In incompressible isotropic elasticity, the Valanis and Landel strain energy function has certain attractive features from both the mathematical and physical view points. This separable form of strain energy has been widely and successfully used in predicting isotropic elastic deformations. We prove that the Valanis–Landel hypothesis is part of a general form of the isotropic strain energy function. The Valanis–Landel form is extended to take anisotropy into account and used to construct constitutive equations for anisotropic problems including stress-softening Mullins materials. The anisotropic separable forms are expressed in terms of spectral invariants that have clear physical meanings. The elegance and attractive features of the extended form are demonstrated, and its simplicity in analysing anisotropic and stress-softening materials is expressed. The extended anisotropic separable form is able to predict, and compares well with, numerous experimental data available in the literature for different types of materials, such as soft tissues, magneto-sensitive materials and (stress-softening) Mullins materials. The simplicity in handling some constitutive inequalities is demonstrated. The work here sets an alternative direction in formulating anisotropic solids in the sense that it does not explicitly use the standard classical invariants (or their variants) in the governing equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Kinani, R., Hartmann, S., Netz, T.: Transversal isotropy based on a multiplicative decomposition of the deformation gradient within p-version finite elements. Z. Angew. Math. Mech. (2014). doi:10.1002/zamm.201300155

  2. Bellan C., Bossis G.: Field dependence of viscoelastic properties of MR elastomers. Int. J. Mod. Phys. B. 16, 2447–2453 (2002)

    Article  Google Scholar 

  3. Bustamante R.: Transversely isotropic nonlinear magneto-active elastomers. Acta Mech. 210, 183–214 (2010)

    Article  MATH  Google Scholar 

  4. Bustamante R., Shariff M.H.B.M.: A principal axis formulation for nonlinear magnetoelastic deformations: isotropic bodies. Eur. J. Mech. A Solids 50, 17–27 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chui C., Kobayashi E., Chen X., Hisada T., Sakuma I.: Transversely isotropic properties of porcine liver tissue: experiments and constitutive modeling. Med. Bio. Eng. Comput. 45, 99–106 (2007)

    Article  Google Scholar 

  6. Ciarletta P., Izzo I., Micera S., Tendick F.: Stiffening by fiber reinforcement in soft materials: a hyperelastic theory at large strains and its application. J. Mech. Behav. Biomed. Mater. 4, 1359–1368 (2011)

    Article  Google Scholar 

  7. Dargazany R., Itskov M.: A network evolution model for the anisotropic mullins effect in carbon black filled rubbers. Int. J. Solids Struct. 46, 2967–2977 (2009)

    Article  MATH  Google Scholar 

  8. Diani J., Brieu M., Gilormini P.: Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material. Int. J. Solids Struct. 43(10), 3044–3056 (2006)

    Article  MATH  Google Scholar 

  9. Diani J., Brieu M., Vacherand M.: A damage directional constitutive model for Mullins effect with permanent set and induced anisotropy. Eur. J. Mech. A Solids 25, 483–496 (2006)

    Article  MATH  Google Scholar 

  10. Dokos S., Smaill B.H., Young A.A., LeGrice I.J.: Shear properties of passive ventricular myocardium. Am. J. Physiol. Heart Circ. Physiol. 283, H2650–H2659 (2002)

    Article  Google Scholar 

  11. Dorfmann A., Pancheri F.: A constitutive model for the Mullins effect with changes in material symmetry. Int. J. Nonlinear Mech. 47(8), 874–887 (2012)

    Article  Google Scholar 

  12. Feng Y., Okamoto R.J., Namani R., Genin G.M., Bayly P.V.: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23, 117–132 (2013)

    Article  Google Scholar 

  13. Hanson D.E., Hawley M., Houlton R., Chitanvis K., Rae P., Orler B.E., Wrobleski D.A.: Stress softening experiments in silica-filled polydimethylsiloxane provide insight into a mechanism for the Mullins effect. Polymer 46(24), 10989–10995 (2005)

    Article  Google Scholar 

  14. Humphrey J., Yin F.: Biomechanical experiments on excised myocardium: Theoretical considerations. J. Biomech. 22(4), 377–383 (1989)

    Article  Google Scholar 

  15. Humphrey J., Strumpf R., Yin F.: Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Eng. 112(3), 340–346 (1990)

    Article  Google Scholar 

  16. Hill R.: Constitutive inequalities for isotropic elastic solids under finite strain. Proc. R. soc. Lond. A 314, 457–472 (1970)

    Article  MATH  Google Scholar 

  17. Holzapfel G.A., Ogden R.W.: Constitutive modeling of passive myocardium: a structurally based framework of material characterization. Philos. Trans. R. Soc. A 367, 3445–3475 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Itskov, M., Aksel, N.A.: Class of orthotropic and transversely isotropic hyperelastic constitutive models based on polyconvex strain energy function. Int J Solids Stuct 41, 3833–3848 (2004)

  19. Itskov, M., Halberstroh, E., Ehret, A.E., Vhringer, M.C.: Experimental observation of the deformation induced anisotropy of the Mullins effect in rubber. Kaut. Gummi. Kunstst. 93–96 (2006)

  20. Jones D.F., Treloar L.R.G.: The properties of rubber in pure homogeneous strain. J. Phys. D Appl. Phys. 8(11), 1285–1304 (1975)

    Article  Google Scholar 

  21. Kankanala S.V., Triantafyllidis N.: On finitely strained magnetorheological elastomers. J. Mech. Phys. Solids 52, 2869–2908 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Machado G., Chagnon G., Favier D.: Induced anisotropy by the Mullins effect in filled silicone rubber. Mech. Mater. 50, 70–80 (2012)

    Article  Google Scholar 

  23. Marckmann G., Verron E.: Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79, 835–858 (2006)

    Article  Google Scholar 

  24. May-Newman K., Yin F.: A constitutive law for mitral valve tissue. J. Biomech. Eng. 120(1), 38–47 (1998)

    Article  Google Scholar 

  25. Mullins L., Tobin N.R.: Theoretical model for the elastic behaviour of filler reinforced vulcanized rubbers. Rubber Chem. Technol. 30, 551–571 (1957)

    Google Scholar 

  26. Ogden R.W.: Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A 326, 565–584 (1972)

    Article  MATH  Google Scholar 

  27. Ogden R.W.: Non-linear Elastic Deformations. Dover, New York (1997)

    Google Scholar 

  28. Ogden, R.W.: Nonlinear elasticity, anisotropy and residual stresses in soft tissue. In: Holzapfel G.A., Ogden R.W. (eds) Biomechanics of soft tissue in cardiovascular systems. CISM courses and lectures vol 441, pp. 65–10. Springer (2003)

  29. Saccomandi, G.: Phenomenological theory of rubber-like elasticity. In: Saccomandi, G., Ogden, R.W. (2004) Thermomechanics of Rubber-Like Elasticity: CISM Lectures Notes 452, pp. 91–134. Springer Wien, NewYork (2004)

  30. Shariff M.H.B.M.: Strain energy function for filled and unfilled rubberlike material. Rubber Chem. Technol. 73, 1–21 (2000)

    Article  Google Scholar 

  31. Shariff M.H.B.M.: An anisotropic model of the Mullins effect. J. Eng. Math. 56, 415–435 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shariff M.H.B.M.: Nonlinear transversely isotropic elastic solids: an alternative representation. Q. J. Mech. Appl. Math. 61, 129–149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shariff M.H.B.M.: Anisotropic stress-softening model for compressible solids. Z. Angew. Math. Phys. (ZAMP) 60, 1112–1134 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shariff M.H.B.M.: Physical invariants for nonlinear orthotropic solids. Int. J. Solids Struct. 48, 1906–1914 (2011)

    Article  Google Scholar 

  35. Shariff M.H.B.M.: Nonlinear orthotropic elasticity: only six invariants are independent. J. Elast. 110, 237–241 (2013a)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shariff M.H.B.M.: Physical invariant strain energy function for passive myocardium. Biomech. Model Mechanobiol. 12, 215–223 (2013b)

    Article  Google Scholar 

  37. Shariff M.H.B.M.: Direction dependent orthotropic model for Mullins materials. Int. J. Solids Struct. 51, 4357–4372 (2014)

    Article  Google Scholar 

  38. Shariff M.H.B.M., Bustamante R.: On the independence of strain invariants of two preferred direction nonlinear elasticity. Int. J. Eng. Sci. 97, 18–25 (2015)

    Article  MathSciNet  Google Scholar 

  39. Shariff, M.H.B.M., Bustamante, R., Hossain, M., Steinmann, P.: A novel spectral formulation for transversely isotropic magneto-elasticity Math. Mech. Solids (2015). doi:10.1177/1081286515618999

  40. Valanis K.C., Landel R.F.: The strain-energy function of hyperelastic material in terms of the extension ratios. J. Appl. Phys. 38, 2997–3002 (1967)

    Article  Google Scholar 

  41. Weinberg E.J., Kaazeempur-Mofrad M.R.: A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics. J. Biomech. 39, 1557–1561 (2006)

    Article  Google Scholar 

  42. Weiss, J.A., Gardiner, J.C., Bonifasi-Lista, C.: Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J. Biomech. 35, 943–950 (2002)

  43. Yin F.C.P., Strumpf R.K, Chew P.H., Zeger S.L.: Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech. 20, 577–589 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. B. M. Shariff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shariff, M.H.B.M. Anisotropic separable free energy functions for elastic and non-elastic solids. Acta Mech 227, 3213–3237 (2016). https://doi.org/10.1007/s00707-015-1534-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1534-9

Keywords

Navigation