Skip to main content
Log in

Cavitation instabilities between fibres in a metal matrix composite

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Short fibre reinforced metal matrix composites (MMC) are studied here to investigate the possibility that a cavitation instability can develop in the metal matrix. The high stress levels needed for a cavitation instability may occur in metal–ceramic systems due to the constraint on plastic flow induced by bonding to the ceramics that only show elastic deformation. In an MMC the stress state in the metal matrix is highly non-uniform, varying between regions where shear stresses are dominant and regions where hydrostatic tension is strong. An Al–SiC whisker composite with a periodic pattern of transversely staggered fibres is here modelled by using an axisymmetric cell model analysis. First the critical stress level is determined for a cavitation instability in an infinite solid made of the Al matrix material. By studying composites with different distributions and aspect ratios of the fibres it is shown that regions between fibre ends may develop hydrostatic tensile stresses high enough to exceed the critical level for a cavitation instability. For cases where a void is located in such regions it is shown that unstable cavity growth develops when the void is initially much smaller than the highly stressed region of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McDanels D.L.: Analysis of stress–strain, fracture, and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement. Metall. Trans. A 16, 1105–1115 (1985)

    Article  Google Scholar 

  2. Zok F., Embury J.D., Ashby M.F., Richmond O. et al.: The influence of pressure on damage evolution and fracture in metal–matrix composites. In: Andersen, S.I. (ed.) Mechanical and Physical Behaviour of Metallic and Ceramic Composites, pp. 517–526. Risø National Laboratory, Denmark (1988)

    Google Scholar 

  3. Mummery P., Derby B.: The influence of microstructure on the fracture behavior of particulate metal matrix composites. Mater. Sci. Eng. A 135, 221–224 (1991)

    Article  Google Scholar 

  4. Christman T., Needleman A., Nutt S., Suresh S.: On microstructural evolution and micromechanical modelling of deformation of a whisker-reinforced metal–matrix composite. Mater. Sci. Eng. A 107, 49–61 (1989)

    Article  Google Scholar 

  5. German R.M., Bose A.: Fabrication of intermetallic matrix composites. Mater. Sci. Eng. A 107, 107–116 (1989)

    Article  Google Scholar 

  6. Needleman A., Nutt S.R., Suresh S., Tvergaard V.: Matrix, reinforcement and interfacial failure. In: Suresh, S., Mortensen, A., Needleman, A. (eds.) Fundamentals of Metal Matrix Composites, pp. 233–250. Butterworth-Heinemann, Boston, MA (1993)

    Chapter  Google Scholar 

  7. Nutt S.R., Needleman A.: Void nucleation at fiber ends in Al–SiC composites. Scr. Metall. 21, 705–710 (1987)

    Article  Google Scholar 

  8. Tvergaard V.: Effect of fibre debonding in a whisker-reinforced metal. Mater. Sci. Eng. A 125, 203–213 (1990)

    Article  Google Scholar 

  9. Tvergaard V.: Model studies of fibre breakage and debonding in a metal reinforced by short fibres. J. Mech. Phys. Solids 41, 1309–1326 (1993)

    Article  MATH  Google Scholar 

  10. Tvergaard V.: Fibre debonding and breakage in a whisker-reinforced metal. Mater. Sci. Eng. A 190, 215–222 (1995)

    Article  Google Scholar 

  11. Tvergaard V.: Breakage and debonding of short brittle fibres among particulates in a metal matrix. Mater. Sci. Eng. A 369, 192–200 (2004)

    Article  Google Scholar 

  12. Levy A., Papazian J.M.: Tensile properties of a short fiber-reinforced SiC/Al composite: Part II. Finite element analysis. Metall. Trans. 21A, 411–420 (1990)

    Article  Google Scholar 

  13. Hom C.L.: Three-dimensional finite element analysis of plastic deformation in a whisker-reinforced metal matrix composite. J. Mech. Phys. Solids 40, 991–1008 (1992)

    Article  Google Scholar 

  14. Bishop R.F., Hill R., Mott N.F.: The theory of indentation and hardness tests. Proc. Phys. Soc. 57, 147–159 (1945)

    Article  Google Scholar 

  15. Hill R.: The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950)

    MATH  Google Scholar 

  16. Huang Y., Hutchinson J.W., Tvergaard V.: Cavitation instabilities in elastic–plastic solids. J. Mech. Phys. Solids 39, 223–241 (1989)

    Article  Google Scholar 

  17. Tvergaard V., Huang Y., Hutchinson J.W.: Cavitation instabilities in a power hardening elastic–plastic solid. Eur. J. Mech. A/Solids 11, 215–231 (1992)

    Google Scholar 

  18. Niordson C.F., Tvergaard V.: Size-effects on cavitation instabilities. Trans. ASME E J. Appl. Mech. 73, 246–253 (2006)

    Article  MATH  Google Scholar 

  19. Legarth B.N., Tvergaard V.: 3D analyses of cavitation instabilities accounting for plastic anisotropy. ZAMM 90, 701–709 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kennedy T.C., Puttapitukporn T., Kassner M.E.: Dynamic effects on cavitation instabilities in solids. Acta Mech. 165, 73–85 (2003)

    Article  MATH  Google Scholar 

  21. Ball J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. Lond. A 306, 557–610 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Horgan C.O., Abeyaratne R.: A bifurcation problem for a compressible nonlinearly elastic medium: growth of a microvoid. J. Elast. 16, 189–200 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Horgan C.O., Polignone D.A.: Cavitation in nonlinearly elastic solids: a review. Appl. Mech. Rev. 48, 471–485 (1995)

    Article  Google Scholar 

  24. Ashby M.F., Blunt F.J., Bannister M.: Flow characteristics of highly constrained metal wires. Acta Metall. 37, 1847–1857 (1989)

    Article  Google Scholar 

  25. Tvergaard V.: Studies of void growth in a thin ductile layer between ceramics. Comput. Mech. 20, 186–191 (1997)

    Article  MATH  Google Scholar 

  26. Hutchinson J.W. et al.: Finite strain analysis of elastic–plastic solids and structures. In: Hartung, R.F. (ed.) Numerical Solution of Nonlinear Structural Problems, pp. 17. ASME, New York (1973)

    Google Scholar 

  27. Tvergaard V.: Effect of thickness inhomogeneities in internally pressurized elastic–plastic spherical shells. J. Mech. Phys. Solids 24, 291–304 (1976)

    Article  Google Scholar 

  28. Tvergaard V.: On cavitation instabilities with interacting voids. Eur. J. Mech. A/Solids 32, 52–58 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viggo Tvergaard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tvergaard, V. Cavitation instabilities between fibres in a metal matrix composite. Acta Mech 227, 993–1003 (2016). https://doi.org/10.1007/s00707-015-1511-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1511-3

Keywords

Navigation