Skip to main content
Log in

Band gaps of elastic waves in 1-D phononic crystal with dipolar gradient elasticity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The dispersive relations of Bloch waves in the periodic laminated structure formed by periodically repeating of two different gradient elastic solids are studied in this paper. First, the various wave modes in the gradient elastic solid, which are different from those in the classical elastic solid, are formulated. Apart from the dispersive P wave and SV wave, there are two evanescent waves, which become the P type and S type surface waves at the interface of two different gradient elastic solids. Next, the continuity conditions of displacement vector, the normal derivative of the displacement vector and the monopolar and dipolar tractions across the interface between two different gradient elastic solids are used to derive the transfer matrix of the state vector in a typical single cell. At last, the Bloch theorem of Bloch waves in the periodical structure is used to give the dispersive equation. The in-plane Bloch waves and the anti-plane Bloch waves are both considered in the present work. The oblique propagation situation and the normal propagation situation are also considered, respectively. The numerical results are obtained by solving the dispersive equation. The influences of two microstructure parameters of the gradient elastic solid and the microstructure parameter ratio of two different gradient elastic solids on the dispersive relation are discussed based on the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen G., Narayanaswamy A., Dames C.: Engineering nanoscale phonon and photon transport for direct energy conversion. Superlattice Microstruct. 35, 161–172 (2004)

    Article  Google Scholar 

  2. Cai B., Wei P.J.: Influences of gradient profile on the band gap of two-dimensional phononic crystal. J. Appl. Phys. 110, 103514 (2011)

    Article  Google Scholar 

  3. Cai B., Wei P.J.: Surface/interface effects on dispersion relations of 2D phononic crystals with parallel nanoholes or nanofibers. Acta Mech. 224, 2749–2758 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eringen, A.C.: Mechanics of micromorphic materials. In: Gõrtler, H. Proceedings of XI. International Congress of Applied Mechanics, Springer, New York (1964)

  5. Eringen A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–924 (1966)

    MathSciNet  MATH  Google Scholar 

  6. Eringen A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291–1301 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eringen A.C.: Nonlocal Continuum Field Theories. Springer, Berlin (2001)

    MATH  Google Scholar 

  8. Green A.E., Rivlin R.S.: Multipolar continuum mechanics. Arch Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Green A.E.: Micro-materials and multipolar continuum mechanics. Int. J. Eng. Sci. 3, 533–537 (1965)

    Article  MathSciNet  Google Scholar 

  10. Georgiadis H.G.: The Mode III Crack Problem in microstructured solids governed by dipolar gradient elasticity: static and dynamic analysis. ASME J. Appl. Mech. 70, 517–530 (2003)

    Article  MATH  Google Scholar 

  11. Georgiadis H.G., Vardoulakis I., Velgaki E.G.: Dispersive Rayleigh-wave propagation in microstructured solids characterized by dipolar gradient elasticity. J. Elast. 74, 17–45 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gourgiotis P.A., Georgiadis H.G., Neocleous I.: On the reflection of waves in half-spaces of microstructured materials governed by dipolar gradient elasticity. Wave Motion 50, 437–455 (2013)

    Article  MathSciNet  Google Scholar 

  13. Gourgiotis P.A., Georgiadis H.G.: Torsional and SH surface waves in an isotropic and homogenous elastic half-space characterized by the Toupin–Mindlin gradient theory. Int. J. Solids Struct. 62, 217–228 (2015)

    Article  Google Scholar 

  14. Håkansson A., Sánchez-Dehesa J., Sanchis L.: Acoustic lens design by genetic algorithms. Phys. Rev. B 70, 214302 (2004)

    Article  Google Scholar 

  15. Hou Z., Wu F., Liu Y.: Phononic crystals containing piezoelectric material. Solid State Commun. 130, 745–749 (2004)

    Article  Google Scholar 

  16. Khelif A., Choujaa A., Benchabane S., Djafari-Rouhani B., Laude V.: Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Appl. Phys. Lett. 84, 4400–4402 (2004)

    Article  Google Scholar 

  17. Kushwaha M.S., Halevi P., Dobrzynski L., Djafari-Rouhani B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993)

    Article  Google Scholar 

  18. Liu Z., Zhang X., Mao Y., Zhu Y.Y., Yang Z., Chan C.T. et al.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    Article  Google Scholar 

  19. Lan M., Wei P.J.: Laminated piezoelectric phononic crystal with imperfect interfaces. J. Appl. Phys. 111, 013505 (2012)

    Article  Google Scholar 

  20. Lan M., Wei P.J.: Band gap of piezoelectric/piezomagnetic phononic crystal with graded interlayer. Acta Mech. 225, 1779–1794 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li Y.Q., Wei P.J.: Reflection and transmission of plane waves at the interface between two different dipolar gradient elastic half-spaces. Int. J. Solids Struct. 56(57), 194–208 (2015)

    Article  Google Scholar 

  22. Li Y.Q., Wei P.J., Tang Q.H.: Reflection and transmission of elastic waves at the interface between two gradient-elastic solids with surface energy. Eur. J. Mech. A-Solid 52, 54–71 (2015)

    Article  MathSciNet  Google Scholar 

  23. Lu M.H., Feng L., Chen Y.F.: Phononic crystals and acoustic metamaterials. Mater. Today 12, 34–42 (2009)

    Article  Google Scholar 

  24. Mindlin R.D., Tiersten H.F.: Effects of couple stress in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  26. Parfitt V.R., Eringen A.C.: Reflection of plane waves from the flat boundary of a micropolar half-space. J. Acoust. Soc. Am. 45, 1258–1272 (1969)

    Article  Google Scholar 

  27. Pang Y., Jiao F.Y., Liu J.X.: Propagation behavior of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with line defects. Acta Mech. Sinica 30(5), 703–713 (2014)

    Article  MathSciNet  Google Scholar 

  28. Qiu C., Liu Z., Shi J., Chan C.T.: Directional acoustic source based on the resonant cavity of two-dimensional phononic crystals. Appl. Phys. Lett. 86, 224105 (2005)

    Article  Google Scholar 

  29. Sigalas M.M., Economou E.N.: Elastic and acoustic wave band structure. J. Sound Vib. 158, 377–382 (1992)

    Article  Google Scholar 

  30. Sun J.Z., Wei P.J.: Band gaps of 2D phononic crystal with imperfect interface. Mech. Adv. Mater. Struct. 21, 107–116 (2014)

    Article  Google Scholar 

  31. Toupin R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tomar S.K., Gogna M.L.: Reflection and refraction of longitudinal wave at an interface between two micropolar elastic solids at welded contact. J. Acoust. Soc. Am. 97, 822–830 (1995)

    Article  MATH  Google Scholar 

  33. Tomar S.K., Monika G.: Reflection and transmission of waves from a plane interface between two microstretch solid half-spaces. Int. J. Eng. Sci. 43, 139–169 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang Y.Z., Li F.M., Kishimoto K., Wang Y.S., Huang W.H.: Elastic wave band gaps in magnetoelectroelastic phononic crystals. Wave Motion 46, 47–56 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang Y.Z., Li F.M., Kishimoto K., Wang Y.S., Huang W.H.: Band gaps of elastic waves in three-dimensional piezoelectric phononic crystals with initial stress. Eur. J. Mech. A-Solids 29, 182–189 (2010)

    Article  Google Scholar 

  36. Yang S., Page J., Liu Z., Cowan M., Chan C., Sheng P.: Focusing of sound in a 3D phononic crystal. Phys. Rev. Lett. 93, 024301 (2004)

    Article  Google Scholar 

  37. Zhao Y.P., Wei P.J.: The band gap of 1D viscoelastic phononic crystal. Comp. Mater. Sci. 46, 603–606 (2009)

    Article  Google Scholar 

  38. Zhao Y.P., Wei P.J.: The influence of viscosity on band gaps of 2D phononic crystal. Mech. Adv. Mater. Struct. 17, 383–392 (2010)

    Article  Google Scholar 

  39. Zhan Z.Q., Wei P.J.: Influences of anisotropy on band gaps of 2D phononic crystal. Acta. Mech. Solida Sin. 23, 182–188 (2010)

    Article  Google Scholar 

  40. Zhan Z.Q., Wei P.J.: Band gaps of three-dimensional phononic crystal with anisotropic spheres. Mech. Adv. Mater. Struct. 21, 245–254 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wei, P. & Zhou, Y. Band gaps of elastic waves in 1-D phononic crystal with dipolar gradient elasticity. Acta Mech 227, 1005–1023 (2016). https://doi.org/10.1007/s00707-015-1495-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1495-z

Keywords

Navigation