Skip to main content
Log in

Green’s function for a transversely isotropic multi-layered half-space: an application of the precise integration method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A numerical approach is presented for the evaluation of Green’s function for a multi-layered half-space. The formulation is unconditionally stable and has the computational simplicity with only the algebraic calculations involved. It imposes no limit to the thickness of the layered medium and the magnitude of frequency. In the analysis, the Fourier–Bessel transform and precise integration method (PIM) are employed. Here, the Fourier–Bessel transform is employed to convert the wave motion equation from the spatial domain to the wavenumber domain, which derives a second-order ordinary differential equation. Then, a dual vector representation of wave motion equation is introduced to reduce the second-order differential equation to first order. It is solved by PIM. Finally, the Green’s function in the wavenumber domain is obtained. In order to calculate the Green’s function in the spatial domain, the inverse Fourier–Bessel transform over the wavenumber is employed for deriving the solutions, which results in a one-dimensional infinite integral with Bessel functions involved. An adaptive Gauss quadrature is used for the evaluation of this integral. Numerical examples are provided to demonstrate the capability of the proposed method. Comparisons with other methods are made. Very promising results are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ward W., Marsland A., Samuels S.: Properties of the London clay at the Ashford common shaft: in-situ and undrained strength tests. Geotechnique 15, 321–344 (1965)

    Article  Google Scholar 

  2. Atkinson J.: Anisotropic elastic deformations in laboratory tests on undisturbed London clay. Geotechnique 25, 357–374 (1975)

    Article  Google Scholar 

  3. Abelev A.V., Lade P.V.: Effects of cross anisotropy on three-dimensional behavior of sand. I: stress–strain behavior and shear banding. J. Eng. Mech. 129, 160–166 (2003)

    Article  Google Scholar 

  4. Singh B.: Wave propagation in a prestressed piezoelectric half-space. Acta Mech. 211, 337–344 (2010)

    Article  MATH  Google Scholar 

  5. Zheng P., Zhao S.-X., Ding D.: Dynamic Green’s functions for a poroelastic half-space. Acta Mech. 224, 17–39 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Zheng P., Ding B., Zhao S.X., Ding D.: Dynamic response of a multilayered poroelastic half-space to harmonic surface tractions. Transp. Porous Media 99, 229–249 (2013)

    Article  MathSciNet  Google Scholar 

  7. Stoneley R.: The seismological implications of aeolotropy in continental structure. Geophys. Suppl. Mon. Notices R. Astron. Soc. 5, 343–353 (1949)

    Article  MATH  Google Scholar 

  8. Anderson D.L.: Elastic wave propagation in layered anisotropic media. J. Geophys. Res. 66, 2953–2963 (1961)

    Article  MathSciNet  Google Scholar 

  9. Buchwald V.: Rayleigh waves in transversely isotropic media. Q. J. Mech. Appl. Math. 14, 293–318 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  10. Singh S.J.: Static deformation of a transversely isotropic multilayered half-space by surface loads. Phys. Earth Planet. Inter. 42, 263–273 (1986)

    Article  Google Scholar 

  11. Seale S.H., Kausel E.: Point loads in cross-anisotropic, layered halfspaces. J. Eng. Mech. 115, 509–524 (1989)

    Article  Google Scholar 

  12. Rajapakse R., Wang Y.: Green’s functions for transversely isotropic elastic half space. J. Eng. Mech. 119, 1724–1746 (1993)

    Article  Google Scholar 

  13. Wang C.D., Tzeng C.S., Pan E., Liao J.J.: Displacements and stresses due to a vertical point load in an inhomogeneous transversely isotropic half-space. Int. J. Rock Mech. Min. Sci. 40, 667–685 (2003)

    Article  Google Scholar 

  14. Wang X., Shen Y.-P.: The general solution of three-dimensional problems in magneto electroelastic media. Int. J. Eng. Sci. 40, 1069–1080 (2002)

    Article  MATH  Google Scholar 

  15. Shodja H.M., Eskandari M.: Axisymmetric time-harmonic response of a transversely isotropic substrate–coating system. Int. J. Eng. Sci. 45, 272–287 (2007)

    Article  Google Scholar 

  16. Rahimian M., Eskandari-Ghadi M., Pak R.Y., Khojasteh A.: Elastodynamic potential method for transversely isotropic solid. J. Eng. Mech. 133, 1134–1145 (2007)

    Article  Google Scholar 

  17. Pao Y.-H.: Elastic waves in solids. J. Appl. Mech. 50, 1152–1164 (1983)

    Article  MATH  Google Scholar 

  18. Nayfeh A.H.: Wave Propagation in Layered Anisotropic Media: With Application to Composites. Elsevier, Amsterdam (1995)

    Google Scholar 

  19. Vanderhijden J.H.M.T.: Propagation of Transient Elastic Waves in Stratified Anisotropic Media. Amsterdam, North-Holland (1987)

    Google Scholar 

  20. Tan E.L.: A robust formulation of SAW Green’s functions for arbitrarily thick multilayers at high frequencies. IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 49, 929–936 (2002)

    Article  Google Scholar 

  21. Tan E.L.: Matrix algorithms for modeling acoustic waves in piezoelectric multilayers. IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 54, 2016–2023 (2007)

    Article  Google Scholar 

  22. Pan E., Bevis M., Han F., Zhou H., Zhu R.: Surface deformation due to loading of a layered elastic half-space: a rapid numerical kernel based on a circular loading element. Geophys. J. Int. 171, 11–24 (2007)

    Article  Google Scholar 

  23. Pan E., Han F.: Green’s functions for transversely isotropic piezoelectric multilayered half-spaces. J. Eng. Math. 49, 271–288 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Khojasteh A., Rahimian M., Eskandari M., Pak R.Y.S.: Asymmetric wave propagation in a transversely isotropic half-space in displacement potentials. Int. J. Eng. Sci. 46, 690–710 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Khojasteh A., Rahimian M., Eskandari M., Pak R.Y.S.: Three-dimensional dynamic Green’s functions for a multilayered transversely isotropic half-space. Int. J. Solids Struct. 48, 1349–1361 (2011)

    Article  MATH  Google Scholar 

  26. Waas G., Riggs H., Werkle H.: Displacement solutions for dynamic loads in transversely-isotropic stratified media. Earthq. Eng. Struct. Dyn. 13, 173–193 (1985)

    Article  Google Scholar 

  27. Kausel E.: Wave propagation in anisotropic layered media. Int. J. Numer. Methods Eng. 23, 1567–1578 (1986)

    Article  MATH  Google Scholar 

  28. Oliveira Barbosa J.M., Kausel E.: The thin-layer method in a cross-anisotropic 3D space. Int. J. Numer. Methods Eng. 89, 537–560 (2012)

    Article  MATH  Google Scholar 

  29. Zhong W.-X.: On precise integration method. J. Comput. Appl. Math. 163, 59–78 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhong W., Zhu J., Zhong X.-X.: On a new time integration method for solving time dependent partial differential equations. Comput. Methods Appl. Mech. Eng. 130, 163–178 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zhong W.: Combined method for the solution of asymmetric Riccati differential equations. Comput. Methods Appl. Mech. Eng. 191, 93–102 (2001)

    Article  Google Scholar 

  32. Zhang J., Gao Q., Tan S.J., Zhong W.X.: A precise integration method for solving coupled vehicle–track dynamics with nonlinear wheel–rail contact. J. Sound Vib. 331, 4763–4773 (2012)

    Article  Google Scholar 

  33. Zhong W.X., Lin J., Gao Q.: The precise computation for wave propagation in stratified materials. Int. J. Numer. Methods Eng. 60, 11–25 (2004)

    Article  MATH  Google Scholar 

  34. Gao Q., Lin J.H., Zhong W.X., Howson W.P., Howson W.P., Howson W.P.: A precise numerical method for Rayleigh waves in a stratified half space. Int. J. Numer. Methods Eng. 67, 771–786 (2006)

    Article  MATH  Google Scholar 

  35. Lin G., Han Z., Li J.: An efficient approach for dynamic impedance of surface footing on layered half-space. Soil Dyn. Earthq. Eng. 49, 39–51 (2013)

    Article  Google Scholar 

  36. Lin G., Han Z., Zhong H., Li J.: A precise integration approach for dynamic impedance of rigid strip footing on arbitrary anisotropic layered half-space. Soil Dyn. Earthq. Eng. 49, 96–108 (2013)

    Article  Google Scholar 

  37. Lin G., Han Z., Li J.: Soil–structure interaction analysis on anisotropic stratified medium. Géotechnique 64, 570–580 (2014)

    Article  Google Scholar 

  38. Lin G., Han Z., Li J.: General formulation and solution procedure for harmonic response of rigid foundation on isotropic as well as anisotropic multilayered half-space. Soil Dyn. Earthq. Eng. 70, 48–59 (2015)

    Article  Google Scholar 

  39. Singh V.K., Singh O.P., Pandey R.K.: Numerical evaluation of the Hankel transform by using linear Legendre multi-wavelets. Comput. Phys. Commun. 179, 424–429 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Singh V.K., Pandey R.K., Singh S.: A stable algorithm for Hankel transforms using hybrid of block-pulse and Legendre polynomials. Comput. Phys. Commun. 181, 1–10 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Han, Z., Lin, G., Li, J.: Dynamic impedance functions for arbitrary-shaped rigid foundation embedded in anisotropic multilayered soil. J. Eng. Mech. 04015045 (2015). doi:10.1061/(ASCE)EM.1943-7889.0000915

  42. Kausel E.: Fundamental Solutions in Elastodynamics: A Compendium. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  43. Chave A.D.: Numerical integration of related Hankel transforms by quadrature and continued fraction expansion. Geophysics 48, 1671–1686 (1983)

    Article  Google Scholar 

  44. Lucas S.K.: Evaluating infinite integrals involving products of Bessel functions of arbitrary order. J. Comput. Appl. Math. 64, 269–282 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  45. Kausel E., Peek R.: Dynamic loads in the interior of a layered stratum: an explicit solution. Bull. Seismol. Soc. Am. 72, 1459–1481 (1982)

    Google Scholar 

  46. Kausel, E.: An explicit solution for the Green functions for dynamic loads in layered media. Research Report R81-13, Publication No. 699, Dept. of Civil Engineering, M.I.T., Cambridge, MA

  47. Rokhlin S., Wang L.: Stable recursive algorithm for elastic wave propagation in layered anisotropic media: stiffness matrix method. J. Acoust. Soc. Am. 112, 822–834 (2002)

    Article  Google Scholar 

  48. Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  49. Chen, L.: Dynamic interaction between rigid surface foundations on multi-layered half space. Int. J. Struct. Stabil. Dyn. 1550004 (2015). doi:10.1142/S0219455415500042

  50. Park J.: Wave Motion in Finite and Infinite Media Using the Thin-Layer Method. Massachusetts Institute of Technology, Cambridge (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L. Green’s function for a transversely isotropic multi-layered half-space: an application of the precise integration method. Acta Mech 226, 3881–3904 (2015). https://doi.org/10.1007/s00707-015-1435-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1435-y

Keywords

Navigation