Acta Mechanica

, Volume 227, Issue 1, pp 29–42 | Cite as

On effective properties of materials at the nano- and microscales considering surface effects

Original Paper

Abstract

In the last years, the rapid increase in the technical capability to control and design materials at the nanoscale has pushed toward an intensive exploitation of new possibilities concerning optical, chemical, thermoelectrical and electronic applications. As a result, new materials have been developed to obtain specific physical properties and performances. In this general picture, it was natural that the attention toward mechanical characterization of the new structures was left, in a sense, behind. Anyway, once the theoretically designed objects proceed toward concrete manufacturing and applications, an accurate and general description of their mechanical properties becomes more and more scientifically relevant. The aim of the paper is therefore to discuss new methods and techniques for modeling the behavior of nanostructured materials considering surface/interface properties, which are responsible for the main differences between nano- and macroscale, and to determine their actual material properties at the macroscale. Our approach is intended to study the mechanical properties of materials taking into account surface properties including possible complex inner microstructure of surface coatings. We use the Gurtin–Murdoch model of surface elasticity. We consider the inner regular and irregular surface thin coatings (i.e., ordered or disordered nanofibers arrays) and present few examples of averaged 2D properties of them. Since the actual 2D properties depend not only on the mechanical properties of fibers or other elements of a coating, but also on the interaction forces between them, the analysis also includes information on the geometry of the microstructure of the coating, on mechanical properties of elements and on interaction forces. Further we use the obtained 2D properties to derive the effective properties of solids and structures at the macroscale, such as the bending stiffness or Young’s modulus.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aifantis E.: Update on a class of gradient theories. Mech. Mater. 35, 259–280 (2003)CrossRefGoogle Scholar
  2. 2.
    Altenbach H., Eremeev V., Morozov N.F.: On equations of the linear theory of shells with surface stresses taken into account. Mech. Solids 45, 331–342 (2010)CrossRefGoogle Scholar
  3. 3.
    Altenbach H., Eremeyev V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49, 1294–1301 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Altenbach H., Eremeyev V.A., Lebedev L.P.: On the existence of solution in the linear elasticity with surface stresses. ZAMM 90, 231–240 (2010)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Altenbach H., Eremeyev V.A., Lebedev L.P.: On the spectrum and stiffness of an elastic body with surface stresses. ZAMM 91, 699–710 (2011)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Altenbach H., Eremeyev V.A., Morozov N.F.: Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. Int. J. Eng. Sci. 59, 83–89 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Altenbach, H., Eremeyev, V.A., Morozov, N.F.: Mechanical properties of materials considering surface effects. In: Cocks, A., Wang, J. (eds.) IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, IUTAM Bookseries (closed), vol. 31, pp. 105–115. Springer, Dordrecht (2013)Google Scholar
  8. 8.
    Arroyo M., Belytschko T.: An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solids 50, 1941–1977 (2002)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Ashby M.F., Evans A.G., Fleck N.A., Gibson L.J., Hutchinson J.W., Wadley H.N.G.: Metal Foams: A Design Guid. Butterworth-Heinemann, Boston (2000)Google Scholar
  10. 10.
    Askes H., Aifantis E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)CrossRefGoogle Scholar
  11. 11.
    Bažant Z.P.: Size effect. Int. J. Solids Struct. 37, 69–80 (2000)MATHCrossRefGoogle Scholar
  12. 12.
    Bhushan, B. (ed.): Springer Handbook of Nanotechnology. Springer, Berlin (2007)Google Scholar
  13. 13.
    Bhushan B., Jung Y.C., Koch K.: Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1631–1672 (2009)CrossRefGoogle Scholar
  14. 14.
    Chen C., Shi Y., Zhang Y., Zhu J., Yan Y.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505 (2006)CrossRefGoogle Scholar
  15. 15.
    Christensen R.M.: Mechanics of Composite Materials. Dover, New York (2005)Google Scholar
  16. 16.
    Contreras C.B., Chagas G., Strumia M.C., Weibel D.E.: Permanent superhydrophobic polypropylene nanocomposite coatings by a simple one-step dipping process. Appl. Surf. Sci. 307, 234–240 (2014)CrossRefGoogle Scholar
  17. 17.
    Craighead H.G.: Nanoelectromechanical systems. Science 290, 1532–1535 (2000)CrossRefGoogle Scholar
  18. 18.
    Cuenot S., Frétigny C., Demoustier-Champagne S., Nysten B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004)CrossRefGoogle Scholar
  19. 19.
    Dastjerdi R., Montazer M.: A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B Biointerfaces 79, 5–18 (2010)CrossRefGoogle Scholar
  20. 20.
    Davydov D., Voyiatzis E., Chatzigeorgiou G., Liu S., Steinmann P., Böhm M.C., Müller-Plathe F.: Size effects in a silica–polystyrene nanocomposite: molecular dynamics and surface-enhanced continuum approaches. Soft Mater. 12, S142–S151 (2014)CrossRefGoogle Scholar
  21. 21.
    dell’Isola F., Madeo A., Seppecher P.: Boundary conditions at fluid–permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46, 3150–3164 (2009)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    dell’Isola F., Rotoli G.: Validity of Laplace formula and dependence of surface tension on curvature in second gradient fluids. Mech. Res. Commun. 22, 485–490 (1995)MATHCrossRefGoogle Scholar
  23. 23.
    dell’Isola F., Sciarra G., Vidoli S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 465, 2177–2196 (2009)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    dell’Isola F., Seppecher P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. Comptes rendus de l’Académie des sciences. Série 2 321, 303–308 (1995)MATHGoogle Scholar
  25. 25.
    dell’Isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32, 33–52 (1997)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la d’Alembert”. ZAMP 63, 1119–1141 (2012)MATHMathSciNetGoogle Scholar
  27. 27.
    Duan H.L., Karihaloo B.L.: Thermo-elastic properties of heterogeneous materials with imperfect interfaces: generalized Levin’s formula and Hill’s connections. J. Mech. Phys. Solids 55, 1036–1052 (2007)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Duan H.L., Wang J., Huang Z.P., Karihaloo B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Aref, H., Van der Giessen, E. (eds.) Advances in Applied Mechanics, vol. 42, pp. 1–68. Elsevier, Amsterdam (2008)Google Scholar
  30. 30.
    Duan H.L., Wang J., Karihaloo B.L., Huang Z.P.: Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Mater. 54, 2983–2990 (2006)CrossRefGoogle Scholar
  31. 31.
    Ekinci K.L., Roukes M.L.: Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005)CrossRefGoogle Scholar
  32. 32.
    Eremeyev V., Morozov N.: The effective stiffness of a nanoporous rod. Doklady Phys. 55, 279–282 (2010)CrossRefGoogle Scholar
  33. 33.
    Eremeyev V.A., Altenbach H., Morozov N.F.: The influence of surface tension on the effective stiffness of nanosize plates. Doklady Phys. 54, 98–100 (2009)MATHCrossRefGoogle Scholar
  34. 34.
    Eremeyev V.A., Lebedev L.P.: Existence of weak solutions in elasticity. Math. Mech. Solids 18, 204–217 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Eringen A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)MATHGoogle Scholar
  36. 36.
    Escobar A.M., Llorca-Isern N.: Superhydrophobic coating deposited directly on aluminum. Appl. Surf. Sci. 305, 774–782 (2014)CrossRefGoogle Scholar
  37. 37.
    Ganesh V.A., Raut H.K., Nair A.S., Ramakrishna S.: A review on self-cleaning coatings. J. Mater. Chem. 21, 16304–16322 (2011)CrossRefGoogle Scholar
  38. 38.
    de Gennes P.G.: Some effects of long range forces on interfacial phenomena. J. Phys. Lett. 42, 377–379 (1981)CrossRefGoogle Scholar
  39. 39.
    de Gennes P.G., Brochard-Wyart F., Quéré D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, New York (2004)CrossRefGoogle Scholar
  40. 40.
    Gent A., Thomas A.: Mechanics of foamed elastic materials. Rubber Chem. Technol. 36, 597–610 (1963)CrossRefGoogle Scholar
  41. 41.
    Gibson L.J., Ashby M.F.: Cellular Solids: Structure and Properties, 2nd edn. Cambridge Solid State Science Series. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  42. 42.
    Grimm S., Giesa R., Sklarek K., Langner A., Gösele U., Schmidt H.W., Steinhart M.: Nondestructive replication of self-ordered nanoporous alumina membranes via cross-linked polyacrylate nanofiber arrays. Nano Lett. 8, 1954–1959 (2008)CrossRefGoogle Scholar
  43. 43.
    Guo, J.G., Zhao, Y.P.: The size-dependent elastic properties of nanofilms with surface effects. J. Appl. Phys. 98, 074306–11 (2005)Google Scholar
  44. 44.
    Gurtin M.E., Markenscoff X., Thurston R.N.: Effect of surface stress on natural frequency of thin crystals. Appl. Phys. Lett. 29, 529–530 (1976)CrossRefGoogle Scholar
  45. 45.
    Gurtin M.E., Murdoch A.I.: Addenda to our paper A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 59, 389–390 (1975)MATHMathSciNetGoogle Scholar
  46. 46.
    Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)MATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    He J., Lilley C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008)CrossRefGoogle Scholar
  48. 48.
    Heinonen S., Huttunen-Saarivirta E., Nikkanen J.P., Raulio M., Priha O., Laakso J., Storgårds E., Levänen E.: Antibacterial properties and chemical stability of superhydrophobic silver-containing surface produced by sol–gel route. Colloids Surf. A Physicochem. Eng. Aspects 453, 149–161 (2014)CrossRefGoogle Scholar
  49. 49.
    Huang G.Y., Yu S.W.: Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys. Status Sol. B 243, R22–R24 (2006)CrossRefGoogle Scholar
  50. 50.
    Huang, Z., Sun, L.: Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mech. 190, 151–163 (2007)MATHCrossRefGoogle Scholar
  51. 51.
    Huang Z., Wang J.: A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech. 182, 195–210 (2006)MATHCrossRefGoogle Scholar
  52. 52.
    Huang Z., Wang J.: Micromechanics of nanocomposites with interface energy effect. In: Li, S., Gao, X.L. (eds) Handbook on Micromechanics and Nanomechanics, pp. 303–348. Pan Stanford Publishing, Stanford (2013)Google Scholar
  53. 53.
    Ibach H.: The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf. Sci. Rep. 29, 195–263 (1997)CrossRefGoogle Scholar
  54. 54.
    Javili A., dell’Isola F., Steinmann P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61, 2381–2401 (2013)MATHMathSciNetCrossRefGoogle Scholar
  55. 55.
    Javili A., McBride A., Steinmann P.: Numerical modelling of thermomechanical solids with mechanically energetic (generalised) Kapitza interfaces. Comput. Mater. Sci. 65, 542–551 (2012)CrossRefGoogle Scholar
  56. 56.
    Javili, A., McBride, A., Steinmann, P.: Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl. Mech. Rev. 65, 010802–1–31 (2012)Google Scholar
  57. 57.
    Javili A., McBride A., Steinmann P., Reddy B.: Relationships between the admissible range of surface material parameters and stability of linearly elastic bodies. Philos. Mag. 92, 3540–3563 (2012)CrossRefGoogle Scholar
  58. 58.
    Javili A., Steinmann P.: A finite element framework for continua with boundary energies. Part I: The two-dimensional case. Comput. Methods Appl. Mech. Eng. 198, 2198–2208 (2009)MATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    Javili A., Steinmann P.: A finite element framework for continua with boundary energies. Part II: The three-dimensional case. Comput. Methods Appl. Mech. Eng. 199, 755–765 (2010)MATHMathSciNetCrossRefGoogle Scholar
  60. 60.
    Javili A., Steinmann P.: On thermomechanical solids with boundary structures. Int. J. Solids Struct. 47, 3245–3253 (2010)MATHCrossRefGoogle Scholar
  61. 61.
    Javili A., Steinmann P.: A finite element framework for continua with boundary energies. Part III: The thermomechanical case. Comput. Methods Appl. Mech. Eng. 200, 1963–1977 (2011)MATHMathSciNetCrossRefGoogle Scholar
  62. 62.
    Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Wang, Y.D.L.J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Phys. Rev. B 73, 235409–6 (2006)Google Scholar
  63. 63.
    Kampshoff E., Hahn E., Hahn E., Hahn E.: Correlation between surface stress and the vibrational shift of CO chemisorbed on Cu surfaces. Phys. Rev. Lett. 73, 704–707 (1994)CrossRefGoogle Scholar
  64. 64.
    Kang X., Zi W.W., Xu Z.G., Zhang H.L.: Controlling the micro/nanostructure of self-cleaning polymer coating. Appl. Surf. Sci. 253, 8830–8834 (2007)CrossRefGoogle Scholar
  65. 65.
    Kim C., Ru C., Schiavone P.: A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math. Mech. Solids 18, 59–66 (2013)MathSciNetCrossRefGoogle Scholar
  66. 66.
    Kim C.I., Schiavone P., Ru C.Q.: Effect of surface elasticity on an interface crack in plane deformations. Proc. R. Soc. A 467, 3530–3549 (2011)MATHMathSciNetCrossRefGoogle Scholar
  67. 67.
    Kushch V.I., Chernobai V.S., Mishuris G.S.: Longitudinal shear of a composite with elliptic nanofibers: local stresses and effective stiffness. Int. J. Eng. Sci. 84, 79–94 (2014)CrossRefGoogle Scholar
  68. 68.
    Kushch V.I., Sevostianov I., Chernobai V.S.: Effective conductivity of composite with imperfect contact between elliptic fibers and matrix: Maxwell’s homogenization scheme. Int. J. Eng. Sci. 83, 146–161 (2014)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Lagowski J., Gatos H.C., Sproles E.S.: Surface stress and normal mode of vibration of thin crystals: GaAs. Appl. Phys. Lett. 26, 493–495 (1975)CrossRefGoogle Scholar
  70. 70.
    Laplace, P.S.: Sur l’action capillaire. supplément à la théorie de l’action capillaire. In: Traité de mécanique céleste, vol. 4. Supplement 1, Livre X, pp. 771–777. Gauthier–Villars et fils, Paris (1805)Google Scholar
  71. 71.
    Laplace, P.S.: À la théorie de l’action capillaire. supplément à la théorie de l’action capillaire. In: Traité de mécanique céleste, vol. 4. Supplement 2, Livre X, pp. 909–945. Gauthier–Villars et fils, Paris (1806)Google Scholar
  72. 72.
    Liu K., Jiang L.: Bio-inspired self-cleaning surfaces. Annu. Rev. Mater. Res. 42, 231–263 (2012)CrossRefGoogle Scholar
  73. 73.
    Liu X., Luo J., Zhu J.: Size effect on the crystal structure of silver nanowires. Nano Lett. 6, 408–412 (2006)CrossRefGoogle Scholar
  74. 74.
    Longley, W.R., Name, R.G.V. (eds.): The Collected Works of J. Willard Gibbs, PHD., LL.D. Vol. I Thermodynamics. Longmans, New York (1928)Google Scholar
  75. 75.
    Lurie S., Belov P.: Gradient effects in fracture mechanics for nano-structured materials. Eng. Fract. Mech. 130, 3–11 (2014)CrossRefGoogle Scholar
  76. 76.
    Lurie S., Volkov-Bogorodsky D., Zubov V., Tuchkova N.: Advanced theoretical and numerical multiscale modeling of cohesion/adhesion interactions in continuum mechanics and its applications for filled nanocomposites. Comput. Mater. Sci. 45, 709–714 (2009)CrossRefGoogle Scholar
  77. 77.
    Lurie S.A., Belov P.A.: Cohesion field: Barenblatt’s hypothesis as formal corollary of theory of continuous media with conserved dislocations. Int. J. Fract. 150, 181–194 (2008)MATHCrossRefGoogle Scholar
  78. 78.
    Lurie S.A., Kalamkarov A.L.: General theory of continuous media with conserved dislocations. Int. J. Solids Struct. 44, 7468–7485 (2007)MATHCrossRefGoogle Scholar
  79. 79.
    Ma X., Liu A., Xu H., Li G., Hu M., Wu G.: A large-scale-oriented ZnO rod array grown on a glass substrate via an in situ deposition method and its photoconductivity. Mater. Res. Bull. 43, 2272–2277 (2008)CrossRefGoogle Scholar
  80. 80.
    Melechko A.V., Merkulov V.I., McKnight T.E., Guillorn M., Klein K.L., Lowndes D.H., Simpson M.L.: Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97, 041301 (2005)CrossRefGoogle Scholar
  81. 81.
    Michelitsch T., Maugin G., Nowakowski A., Nicolleau F., Rahman M.: The fractional Laplacian as a limiting case of a self-similar spring model and applications to n-dimensional anomalous diffusion. Fract. Calc. Appl. Anal. 16, 827–859 (2013)MathSciNetCrossRefGoogle Scholar
  82. 82.
    Miller R.E., Shenoy V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139 (2000)CrossRefGoogle Scholar
  83. 83.
    Mindlin R.D.: Second gradient of strain and surface–tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)CrossRefGoogle Scholar
  84. 84.
    Mishuris G.S.: Interface crack and nonideal interface concept (Mode III). Int. J. Fract. 107, 279–296 (2001)CrossRefGoogle Scholar
  85. 85.
    Mishuris, G.S.: Mode III interface crack lying at thin nonhomogeneous anisotropic interface. Asymptotics near the crack tip. In: Movchan A.B. (ed.) IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics, Solid Mechanics and Its Applications, vol. 113, pp. 251–260. Kluwer, New York (2004)Google Scholar
  86. 86.
    Mishuris G.S., Kuhn G.: Asymptotic behaviour of the elastic solution near the tip of a crack situated at a nonideal interface. ZAMM 81, 811–826 (2001)MATHMathSciNetCrossRefGoogle Scholar
  87. 87.
    Ostoja-Starzewski M.: Lattice models in micromechanics. Appl. Mech. Rev. 55, 35–59 (2002)CrossRefGoogle Scholar
  88. 88.
    Ostoja-Starzewski M., Li J., Joumaa H., Demmie P.: From fractal media to continuum mechanics. ZAMM 94, 373–401 (2014)MATHMathSciNetCrossRefGoogle Scholar
  89. 89.
    Özgür Ü., Alivov Y.I., Liu C., Teke A., Reshchikov M., Doğan S., Avrutin V., Cho S.J., Morkoc H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  90. 90.
    Pan X.H., Yu S.W., Feng X.Q.: A continuum theory of surface piezoelectricity for nanodielectrics. Sci. China Phys. Mech. Astronomy 54, 564–573 (2011)CrossRefGoogle Scholar
  91. 91.
    Podio-Guidugli P., Caffarelli G.V.: Surface interaction potentials in elasticity. Arch. Ration. Mech. Anal. 109, 345–385 (1990)CrossRefGoogle Scholar
  92. 92.
    de Poisson S.D.: Nouvelle théorie de l’action capillaire. Bachelier Père et Fils, Paris (1831)Google Scholar
  93. 93.
    Povstenko, Y.: Mathematical modeling of phenomena caused by surface stresses in solids. In: Altenbach, H., Morozov, N.F. (eds.) Surface Effects in Solid Mechanics, pp. 135–153. Springer, Berlin (2013)Google Scholar
  94. 94.
    Rios P., Dodiuk H., Kenig S., McCarthy S., Dotan A.: Transparent ultra-hydrophobic surfaces. J. Adhes. Sci. Technol. 21, 399–408 (2007)CrossRefGoogle Scholar
  95. 95.
    Rosi G., Madeo A., Guyader J.L.: Switch between fast and slow Biot compression waves induced by “second gradient microstructure” at material discontinuity surfaces in porous media. Int. J. Solids Struct. 50, 1721–1746 (2013)CrossRefGoogle Scholar
  96. 96.
    Rowlinson J.S., Widom B.: Molecular Theory of Capillarity. Dover, New York (2003)Google Scholar
  97. 97.
    Rubin M., Benveniste Y.: A Cosserat shell model for interphases in elastic media. J. Mech. Phys. Solids 52, 1023–1052 (2004)MATHMathSciNetCrossRefGoogle Scholar
  98. 98.
    Sanjay, S.L., Annaso, B.G., Chavan, S.M., Rajiv, S.V.: Recent progress in preparation of superhydrophobic surfaces: a review. J. Surf. Eng. Mater. Adv. Technol. 2(2), 1–19, Art ID:18791 (2012)Google Scholar
  99. 99.
    Schiavone P., Ru C.Q.: Solvability of boundary value problems in a theory of plane–strain elasticity with boundary reinforcement. Int. J. Eng. Sci. 47, 1331–1338 (2009)MATHMathSciNetCrossRefGoogle Scholar
  100. 100.
    Sciarra G., dell’Isola F., Coussy O.: Second gradient poromechanics. Int. J. Solids Struct. 44, 6607–6629 (2007)MATHMathSciNetCrossRefGoogle Scholar
  101. 101.
    Seppecher, P.: Les fluides de Cahn-Hilliard. Mémoire d’habilitation á diriger des recherches, Université du Sud Toulon (1996)Google Scholar
  102. 102.
    Sfyris D., Sfyris G., Galiotis C.: Curvature dependent surface energy for a free standing monolayer graphene: some closed form solutions of the non-linear theory. Int. J. Non-Linear Mech. 67, 186–197 (2014)CrossRefGoogle Scholar
  103. 103.
    Shenoy V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005)CrossRefGoogle Scholar
  104. 104.
    Sigaeva, T., Schiavone, P.: The effect of surface stress on an interface crack in linearly elastic materials. Math. Mech. Solids. (2014). doi:10.1177/1081286514534871
  105. 105.
    Sigaeva T., Schiavone P.: Solvability of a theory of anti-plane shear with partially coated boundaries. Arch. Mech. 66, 113–125 (2014)MATHMathSciNetGoogle Scholar
  106. 106.
    Spinelli P., Verschuuren M., Polman A.: Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun. 3, 692 (2012)CrossRefGoogle Scholar
  107. 107.
    Steigmann D.J., Ogden R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453, 853–877 (1997)MATHMathSciNetCrossRefGoogle Scholar
  108. 108.
    Steigmann D.J., Ogden R.W.: Elastic surface–substrate interactions. Proc. R. Soc. A 455, 437–474 (1999)MATHMathSciNetCrossRefGoogle Scholar
  109. 109.
    Tan L.K., Kumar M.K., An W.W., Gao H.: Transparent, well-aligned TiO2 nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications. ACS Appl. Mater. Interfaces 2, 498–503 (2010)CrossRefGoogle Scholar
  110. 110.
    Tian X., Yi L., Meng X., Xu K., Jiang T., Lai D.: Superhydrophobic surfaces of electrospun block copolymer fibers with low content of fluorosilicones. Appl. Surf. Sci. 307, 566–575 (2014)CrossRefGoogle Scholar
  111. 111.
    Šilhavý M.: A direct approach to nonlinear shells with application to surface–substrate interactions. Math. Mech. Complex Syst. 1, 211–232 (2013)MATHCrossRefGoogle Scholar
  112. 112.
    Wang G.F., Feng X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 231904 (2007)CrossRefGoogle Scholar
  113. 113.
    Wang G.F., Feng X.Q.: Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. EPL Lett. J. Explor. Front. Phys. 91, 56007 (2010)Google Scholar
  114. 114.
    Wang J., Duan H.L., Huang Z.P., Karihaloo B.L.: A scaling law for properties of nano-structured materials. Proc. R. Soc. A 462, 1355–1363 (2006)MATHCrossRefGoogle Scholar
  115. 115.
    Wang J., Huang Z., Duan H., Yu S., Feng X., Wang G., Zhang W., Wang T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–82 (2011)CrossRefGoogle Scholar
  116. 116.
    Wang X., Wang X., Zhou J., Song J., Liu J., Xu N., Wang Z.L.: Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6, 2768–2772 (2006)CrossRefGoogle Scholar
  117. 117.
    Wang Z.L., Song J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)CrossRefGoogle Scholar
  118. 118.
    Wang Z.Q., Zhao Y.P., Huang Z.P.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48, 140–150 (2010)CrossRefGoogle Scholar
  119. 119.
    Yan Z., Jiang L.: Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects. J. Phys. D Appl. Phys. 44, 365301 (2011)CrossRefGoogle Scholar
  120. 120.
    Yan Z., Jiang L.: Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness. J. Phys. D Appl. Phys. 45, 255401 (2012)CrossRefGoogle Scholar
  121. 121.
    Young T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)CrossRefGoogle Scholar
  122. 122.
    Zhu H.X., Wang J.X., Karihaloo B.L.: Effects of surface and initial stresses on the bending stiffness of trilayer plates and nanofilms. J. Mech. Mater. Struct. 4, 589–604 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Otto von Guericke University MagdeburgMagdeburgGermany
  2. 2.Southern Scientific Center of RASci and Southern Federal UniversityRostov on DonRussia

Personalised recommendations