Acta Mechanica

, Volume 227, Issue 1, pp 185–201 | Cite as

Loss of ellipticity and structural transformations in planar simple crystal lattices

  • E. A. PodolskayaEmail author
  • A. Yu. Panchenko
  • A. B. Freidin
  • A. M. Krivtsov
Original Paper


This work focuses on investigation of structural (phase) transformations in crystal lattices from continuum and discrete points of view. Namely, the continuum, which is equivalent to a simple lattice in the sense of the Cauchy–Born energy, is constructed using long-wave approximation, and its strong ellipticity domains in finite strain space are obtained. It is shown that various domains correspond to variants of triangular and square lattices, and the number of the domains depends on the interaction potential parameters. Non-convex energy profiles and stress–strain diagrams, which are typical for materials allowing twinning and phase transformations, are obtained on the straining paths which connect the domains and cross non-ellipticity zones. The procedures of the lattice stability examinations and estimation of energy relaxation by means of molecular dynamical (MD) simulation are developed, and experimental construction of the envelope of the energy profiles, corresponding to the energy minimizer, is done on several straining paths. The MD experiment also allows to observe the energy minimizing microstructures, such as twins and two-phase structures.

Mathematics Subject Classification

74B20 74N05 74N15 74A50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grinfeld M.A.: Thermodynamic Methods in the Theory of Heterogeneous Systems. Longman, New York (1991)Google Scholar
  2. 2.
    Silhavy M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin (1997)zbMATHCrossRefGoogle Scholar
  3. 3.
    Gurtin M.E.: Two-phase deformations of elastic solids. Arch. Rational Mech. Anal. 84, 1–29 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Knowles J.K., Sternberg E.: On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics. J. Elasticity 8, 329–379 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Lurie A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990)zbMATHGoogle Scholar
  6. 6.
    Ogden R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984)Google Scholar
  7. 7.
    Freidin A.B., Chiskis A.M.: Regions of phase transitions in nonlinear-elastic isotropic materials. Part 1: basic relations. Mech. Solids 29(4), 91–109 (1994)Google Scholar
  8. 8.
    Freidin A.B., Chiskis A.M.: Regions of phase transitions in nonlinear-elastic isotropic materials. Part 2: incompressible materials with a potential depending on one of strain invariants. Mech. Solids 29(4), 46–58 (1994)Google Scholar
  9. 9.
    Fu Y.B., Freidin A.B.: Characterization and stability of two-phase piecewise-homogeneous deformations. Proc. R. Soc. Lond. A 460, 3065–3094 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Freidin A.B., Fu Y.B., Sharipova L.L., Vilchevskaya E.N.: Spherically symmetric two-phase deformations and phase transition zones. Int. J. Solids Struct. 43, 4484–4508 (2006)zbMATHCrossRefGoogle Scholar
  11. 11.
    W E., Ming P.: Cauchy–Born rule and the stability of crystalline solids: static problems. Arch. Rational Mech. Anal. 183(2), 241–297 (2007)CrossRefGoogle Scholar
  12. 12.
    Hudson T., Ortner C.: On the stability of Bravais lattices and their Cauchy–Born approximations. ESAIM: M2AN 46(1), 81–110 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Dobson M., Luskin M., Ortner C.: Accuracy of quasicontinuum approximations near instabilities. J. Mech. Phys. Solids 58(10), 1741–1757 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Born M., Huang K.: Dynamical Theory of Crystal Lattices. Clarendon, Oxford (1954)zbMATHGoogle Scholar
  15. 15.
    Arroyo M., Belytschko T.: An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solids 50(9), 1941–1977 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Sfyris D., Sfyris G., Galiotis C.: Curvature dependent surface energy for a free standing monolayer graphene: some closed form solutions of the non-linear theory. Int. J. Nonlinear Mech. 67, 186–197 (2014)CrossRefGoogle Scholar
  17. 17.
    Ericksen J.L.: On the Cauchy–Born rule. Math. Mech. Solids 13(3-4), 199–220 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Krivtsov, A.M.: Deformation and Fracture of Solids with Microstructure. Fizmatlit, Moscow (2007) (In Russian)Google Scholar
  19. 19.
    Podolskaya E.A., Panchenko A.Yu., Krivtsov A.M., Tkachev P.V.: Stability of ideal infinite 2D crystal lattice. Doklady Phys. 57(2), 92–95 (2012)CrossRefGoogle Scholar
  20. 20.
    Verlet L.: Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159, 98–103 (1967)CrossRefGoogle Scholar
  21. 21.
    Krivtsov A.M.: Energy oscillations in a one-dimensional crystal. Doklady Phys. 59(9), 427–430 (2014)CrossRefGoogle Scholar
  22. 22.
    Allen M.P., Tildesley D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)zbMATHGoogle Scholar
  23. 23.
    Ball J.M., James R.D.: Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100, 13–52 (1987)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • E. A. Podolskaya
    • 1
    • 2
    Email author
  • A. Yu. Panchenko
    • 1
    • 2
  • A. B. Freidin
    • 1
    • 2
    • 3
  • A. M. Krivtsov
    • 1
    • 2
  1. 1.Institute for Problems in Mechanical Engineering RASSt. PetersburgRussia
  2. 2.St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations