Skip to main content
Log in

Structural levels of fatigue failure and damage estimation in 17Mn1Si steel on the basis of a multilevel approach of physical mesomechanics

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The evaluation of crack initiation and growth at microscopic scale is a crucial issue for the safety assessment of macroscopical fractures. In the present paper, the crack propagation in 17Mn1Si steel macroscale is investigated by taking into account the microstructural damage accumulation in polycrystalline solids. The revealed regularities are in good agreement with the concept of physical mesomechanics, which allows obtaining a generalized view of the material deformation and the failure process in the vicinity of the concentrator, which fulfills the limiting, initial and physical conditions and allows obtaining the generalized regularities in deformation and failure of 17Mn1Si steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krasovskii A.Y., Orynyak I.V.: Strength and reliability of piping systems. Strength Mater. 42, 613–621 (2010)

    Article  Google Scholar 

  2. Hu Z., Appleton E.: Dynamic characteristics of a novel self-drive pipeline pig. IEEE Trans. Robot. 21, 781–789 (2005)

    Article  Google Scholar 

  3. Kryzhanivs’kyi E.I., Hrabovs’kyi R.S., Mandryk O.M.: Estimation of the serviceability of oil and gas pipelines after long-term operation according to the parameters of their defectiveness. Mater. Sci. 49, 117–123 (2013)

    Article  Google Scholar 

  4. Panin V.E., Grinyaev Y.V., Egorushkin V.E.: Foundations of physical mesomechanics of structurally inhomogeneous media. Mech. Solids 45, 501–518 (2010)

    Article  Google Scholar 

  5. Yasniy P., Maruschak P., Lapusta Y.: Experimental study of crack growth in a bimetal under fatigue and fatigue-creep conditions. Int. J. Fract. 139, 545–552 (2006)

    Article  MATH  Google Scholar 

  6. Ignatovich S.R., Menou A., Karuskevich M.V., Maruschak P.O.: Fatigue damage and sensor development for aircraft structural health monitoring. Theor. Appl. Fract. Mech. 65, 23–27 (2013)

    Article  Google Scholar 

  7. Majid Z.A., Mohsin R.: Failure investigation of natural gas pipeline. Arabian J. Sci. Eng. 37, 1083–1088 (2012)

    Article  Google Scholar 

  8. Ghonem H., Provan J.W.: Micromechanics theory of fatigue crack initiation and propagation. Eng. Fract. Mech. 13, 963–977 (1980)

    Article  Google Scholar 

  9. Rios E.R.D.L., Mohamed H.J., Miller K.J.: A micro-mechanics analysis for short fatigue crack growth. Fatigue Fract. Eng. Mater. Struct. 8, 49–63 (1985)

    Article  Google Scholar 

  10. Makarov P.V.: Localized deformation and fracture of polycrystals at mesolevel. Theor. Appl. Fract. Mech. 33, 23–30 (2000)

    Article  Google Scholar 

  11. Mishnaevsky L. Jr, Brøndsted P.: Modeling of fatigue damage evolution on the basis of the kinetic concept of strength. Int. J. Fract. 144, 149–158 (2007)

    Article  MATH  Google Scholar 

  12. Schmauder, S., Mishnaevsky, L. Jr.: Micromechanics and nanosimulation of metals and composites. Springer, 420 p (2008)

  13. Sevostianov I., Kachanov M.: Elastic fields generated by inhomogeneities: far-field asymptotics, its shape dependence and relation to the effective elastic properties. Int. J. Solids Struct. 48, 2340–2348 (2011)

    Article  Google Scholar 

  14. Panin V.E., Egorushkin V.E., Panin A.V.: The plastic shear channeling effect and the nonlinear waves of localized plastic deformation and fracture. Phys. Mesom. 13, 215–232 (2010)

    Article  Google Scholar 

  15. Sevostianov I., Kachanov M.: Modeling of the anisotropic elastic properties of plasma-sprayed coatings in relation to their microstructure. Acta Mater. 48, 1361–1370 (2000)

    Article  Google Scholar 

  16. Xue Y., El Kadiri H., Horstemeyer M.F., Jordon J.B., Weiland H.: Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy. Acta Mater. 55, 1975–1984 (2007)

    Article  Google Scholar 

  17. Tong J., Lu Y.-W., Lin B., Tai Y.H., Yates J.R.: Near tip strain evolution under cyclic loading. Fratt. Integr. Strutt. 7, 44–49 (2013)

    Google Scholar 

  18. Pokluda J., Pippan R., Vojtek T., Hohenwarter A.: Near-threshold behaviour of shear-mode fatigue cracks in metallic materials. Fatigue Fract. Eng. Mater. Struct. 37, 232–254 (2014)

    Article  Google Scholar 

  19. Dronov V.S., Botvina L.R., Blinov V.M., Tyutin M.R., Afanas’ev I.A.: Kinetics of small fatigue cracks in steel during cyclic loading. Russ. Metall. (Metally) 2006, 458–466 (2006)

    Article  Google Scholar 

  20. Brighenti R., Carpinteri A., Spagnoli A.: Influence of material microvoids and heterogeneities on fatigue crack propagation. Acta Mech. 225, 3123–3135 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. O. Maruschak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruschak, P.O., Panin, S.V., Stachowicz, F. et al. Structural levels of fatigue failure and damage estimation in 17Mn1Si steel on the basis of a multilevel approach of physical mesomechanics. Acta Mech 227, 151–157 (2016). https://doi.org/10.1007/s00707-015-1420-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1420-5

Keywords

Navigation