Abstract
This paper shows an approach to computing the effective properties of multi-field composite materials and their first-order sensitivities. The approach is based on the application of the complex variable step method for the micromechanical Mori–Tanaka scheme; hence, the first-order sensitivities can be computed in the same analysis. Numerical results are presented for magnetoelectroelastic properties of piezoelectric–piezomagnetic composite materials. A comparison of the results to those obtained by other methods shows that the presented sensitivity analysis gives highly accurate and stable results, but the values of the results are dependent on the applied micromechanical model. The presented approach may be used to solve ill-posed problems of optimal design or identification in coupled fields micromechanics.
Similar content being viewed by others
References
Aboudi J.: Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites. Smart Mater. Struct. 10, 867–877 (2001)
Abreu R., Stich D., Morales J.: On the generalization of the complex step method. J. Comput. Appl. Math. 241, 84–102 (2013)
Al-Mohy A.H., Higham N.J.: The complex step approximation to the Fréchet derivative of a matrix function. Numer. Algorithm 53, 133–148 (2010)
Atkinson K., Han W.: Elementary Numerical Analysis. Wiley, Hoboken (2004)
Benveniste Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech. Mater. 6, 147–157 (1987)
Budiansky B.: On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids 13, 223–227 (1965)
Cacuci D.G.: Sensitivity and Uncertainty Analysis. Volume I: Theory. Chapman and Hall/CRC, Boca Raton (2003)
Callahan J.J.: Advanced Calculus: A Geometric View. Springer, New York (2010)
Dunn M.L., Taya M.: An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proc. R. Soc. Lond. A443, 265–287 (1993)
Dunn M.L., Taya M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993)
El Messiry M.: Theoretical analysis of natural fiber volume fraction of reinforced composites. Alex. Eng. J. 52, 301–306 (2013)
Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. A241, 376–396 (1957)
Gao X.-W., He M.-C.: A new inverse analysis approach for multi-region heat conduction BEM using complex-variable-differentiation method. Eng. Anal. Bound. Elem. 29, 788–795 (2005)
Gautschi W.: Numerical Analysis. Springer, New York (2012)
Griewank A., Walther A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia (2008)
Hill R.: Theory of mechanical properties of fibre-strengthened materials—III. Self-consistent model. J. Mech. Phys. Solids 13, 189–198 (1965)
Huang J.H., Liu H.-K., Dai W.-L.: The optimized fiber volume fraction for magnetoelectric coupling effect in piezoelectric–piezomagnetic continuous fiber reinforced composites. Int. J. Eng. Sci. 38, 1207–1217 (2000)
Huang J.H., Chiu Y.-H., Liu K.-H.: Magneto-electro-elastic Eshelby tensors for a piezoelectric–piezomagnetic composite reinforced by ellipsoidal inclusions. J. Appl. Phys. 83, 5364–5370 (1998)
Jin W., Dennis B.H., Wang B.P.: Improved sensitivity analysis using a complex variable semi-analytical method. Struct. Multidiscip. Optim. 41, 433–439 (2010)
Kiran R., Khandelwal K.: Complex step derivative approximation for numerical evaluation of tangent moduli. Comput. Struct. 140, 1–13 (2014)
Koutsawa Y., Belouettar S., Makradi A., Nasser H.: Sensitivities of effective properties computed using micromechanics differential schemes and high-order Taylor series: application to piezo-polymer composites. Mech. Res. Commun. 37, 489–494 (2010)
Koutsawa Y., Belouettar S., Makradi A., Tiem S.: Automatic differentiation of micromechanics incremental schemes for coupled fields composite materials: effective properties and their sensitivities. Compos. Sci. Technol. 71, 113–121 (2011)
Koutsawa Y., Belouetta S., Makradi A., Tiem S.: Generalization of the micromechanics multi-coating approach to coupled fields composite materials with eigenfields: effective properties. Mech. Res. Commun. 38, 45–51 (2011)
Kröner E.: Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z. Phys. 151, 504–518 (1958)
Lai K.-L., Crassidis J.L.: Extensions of the first and second complex-step derivative approximations. J. Comput. Appl. Math. 219, 276–293 (2008)
Laporte E., Le Tallec P.: Numerical Methods in Sensitivity Analysis and Shape Optimization. Springer, New York (2003)
Lin C.-H., Muliana A.: Micromechanics models for the effective nonlinear electro-mechanical responses of piezoelectric composites. Acta Mech. 224, 1471–1492 (2013)
Lin X.-J., Zhou K.-C., Zhang X.-Y., Zhang D.: Development, modeling and application of piezoelectric fiber composites. Trans. Nonferr. Met. Soc. China 23, 98–107 (2013)
Liu L.P., Kuo H.-Y.: Closed-form solutions to the effective properties of fibrous magnetoelectric composites and their applications. Int. J. Solids Struct. 49, 3055–3062 (2012)
Lyness J., Moler C.: Numerical differentiation of analytic functions. J. Numer. Anal. 4, 202–210 (1967)
Malakooti M.H., Sodano H.A.: Multi-inclusion modeling of multiphase piezoelectric composites. Compos. Part B 47, 181–189 (2013)
Martins J., Kroo I., Alonso J.: An automated method for sensitivity analysis using complex variable. Am. Inst. Aeronaut. Astronaut. 38, 1–12 (2000)
McLaughlin R.: A study of the differential scheme for composite materials. Int. J. Eng. Sci. 15, 237–244 (1977)
Mori T., Tanaka K.: Average stress in matrix and average energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)
Mura, T.: Micromechanics of Defects in Solids. 2nd edn. Martinus Nijhoff Publishers, Dordrecht (1987)
Nemat-Nasser S., Hori M.: Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, Amsterdam (1993)
Odegard G.M.: Constitutive modeling of piezoelectric polymer composites. Acta Mater. 52, 5315–5330 (2004)
Ptaszny J., Dziatkiewicz G., Fedeliński P.: Boundary element method modelling of nanocomposites. Int. J. Multiscale Comput. Eng. 12, 33–43 (2014)
Qu J., Cherkaoui M.: Fundamentals of Micromechanics of Solids. Wiley, Hoboken (2006)
Rosen, C.Z., Hiremath, B.V., Newnham, R. (eds.): Piezoelectricity. American Institute of Physics, New York (1992)
Sakthivel M., Arockiarajan A.: Thermo-electro-mechanical response of 1–3–2 piezoelectric composites: effect of fiber orientations. Acta Mech. 223, 1353–1369 (2012)
Salganik R.L.: Mechanics of bodies with many cracks. Mech. Solids (Engl. Transl.) 8, 135–143 (1973)
Silva E.C.N., Fonseca J.S.O., Kikuchi N.: Optimal design of piezoelectric microstructures. Comput. Mech. 19, 397–410 (1997)
Squire W., Trapp G.: Using complex variables to estimate derivatives of real functions. SIAM 40, 110–112 (1998)
Srinivas S., Li J.Y., Zhou Y.C., Soh A.K: The effective magnetoelectroelastic moduli of matrix-based multiferroic composites. J. Appl. Phys. 99, 043905 (2006)
Stanley L.G., Stewart D.L.: Design Sensitivity Analysis: Computational Issues of Sensitivity Equation Methods. SIAM, Philadelphia (2002)
Varma A., Morbidelli M., Wu H.: Parametric Sensitivity in Chemical Systems. Cambridge University Press, Cambridge (2005)
Vieville P., Bonnet A.S., Lipinski P.: Modelling effective properties of composite materials using the inclusion concept. General considerations. Arch. Mech. 58, 207–239 (2006)
Voorhees A., Millwater H., Bagley R.: Complex variable methods for shape sensitivity of finite element models. Finite Elem. Anal. Des. 47, 1146–1156 (2011)
Voorhees A., Millwater H., Bagley R., Golden P.: Fatigue sensitivity analysis using complex variable methods. Int. J. Fatigue 40, 61–73 (2012)
Wu T.-L., Huang H.L.: Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases. Int. J. Solids Struct. 37, 2981–3009 (2000)
Wu T.-L.: Micromechanics determination of electroelastic properties of piezoelectric materials containing voids. Mater. Sci. Eng. A 280, 320–327 (2000)
Zouari R., Benhamida A., Dumontet H.: A micromechanical iterative approach for the behavior of polydispersed composites. Int. J. Solids Struct. 45, 3139–3152 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dziatkiewicz, G. Complex variable step method for sensitivity analysis of effective properties in multi-field micromechanics. Acta Mech 227, 11–28 (2016). https://doi.org/10.1007/s00707-015-1419-y
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00707-015-1419-y