Continuum effective-stress approach for high-rate plastic deformation of fluid-saturated geomaterials with application to shaped-charge jet penetration

Abstract

A practical engineering approach for modeling the constitutive response of fluid-saturated porous geomaterials is developed and applied to shaped-charge jet penetration in wellbore completion. An analytical model of a saturated thick spherical shell provides valuable insight into the qualitative character of the elastic–plastic response with an evolving pore fluid pressure. However, intrinsic limitations of such a simplistic theory are discussed to motivate the more realistic semi-empirical model used in this work. The constitutive model is implemented into a material point method code that can accommodate extremely large deformations. Consistent with experimental observations, the simulations of wellbore perforation exhibit appropriate dependencies of depth of penetration on pore pressure and confining stress.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Karrech A., Poulet T., Regenauer-Lieb K.: Poromechanics of saturated media based on the logarithmic finite strain. Mech. Mater. 51, 118–136 (2012)

    Article  Google Scholar 

  2. 2

    Wang H.F.: Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton Press, Princeton (2000)

    Google Scholar 

  3. 3

    Swan C., Lakes R., Brand R., Stewart K.: Micromechanically based poroelastic modeling of fluid flow in haversian bone. Trans. ASME J. Biomech. Eng. 125, 25–37 (2003)

    Article  Google Scholar 

  4. 4

    Kohles, S.S., Roberts, J.B. et al.: Linear poroelastic cancellous bone anisotropy: trabecular solid elastic and fluid transport 799 properties. Trans. ASME J. Biomech. Eng. 124, 521–526 (2002)

  5. 5

    Borja R.I.: On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int. J. Solids Struct. 43, 1764–1786 (2006)

    Article  MATH  Google Scholar 

  6. 6

    Gupta A., Bayraktar H.H., Fox J.C., Keaveny T.M., Papadopoulos P.: Constitutive modeling and algorithmic implementation of a plasticity-like model for trabecular bone structures. Comput. Mech. 40, 61–72 (2007)

    Article  MATH  Google Scholar 

  7. 7

    Scambos T.A., Hulbe C., Fahnestock M., Bohlander J.: The link between climate warming and break-up of ice shelves in the antarctic peninsula. J. Glaciol. 46, 516–530 (2000)

    Article  Google Scholar 

  8. 8

    Kamb B.: Rheological nonlinearity and flow instability in the deforming bed mechanism of ice stream motion. J. Geophys. Res. Solid Earth (1978–2012) 96, 16585–16595 (1991)

    Article  Google Scholar 

  9. 9

    Strack, O.E., Leavy, R.B., Brannon, R.M.: Aleatory uncertainty and scale effects in computational damage models for failure and fragmentation. Int. J. Numer. Methods Eng. Special Issue celebrating the 70th birthday of Ted Belytschko (2014)

  10. 10

    Geiser N.K.F., Blight G.: Effective stress in unsaturated soils: Review with new evidence. Int. J. Geomech. 4, 115–126 (2004)

    Article  Google Scholar 

  11. 11

    Terzaghi, K.: The shearing resistance of saturated soils and the angle between planes of shear. In: First International Conference on Soil Mech. and Found. Engr., Harvard University I, pp. 54–56 (1936)

  12. 12

    Fillunger P.: Versuche über die Zugfestigkeit bei allseitigem Wasserduck. Oesterr. Wochenschrift oeffent. Baudienst 29, 443–448 (1915)

    Google Scholar 

  13. 13

    Schrefler B.A., Gawin D.Z.: The effective stress principle: incremental or finite form?. Int. J. Numer. Anal. Methods Geomech. 20, 785–814 (1996)

    Article  Google Scholar 

  14. 14

    Biot M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. i. low-frequency range. J. Acoust. Soc. Am. 28, 168 (1956)

    Article  MathSciNet  Google Scholar 

  15. 15

    Biot M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  MATH  Google Scholar 

  16. 16

    Nedjar B.: Formulation of a nonlinear porosity law for fully saturated porous media at finite strains. J. Mech. Phys. Solids 61, 537–556 (2013)

    Article  MathSciNet  Google Scholar 

  17. 17

    Nur A., Byerlee J.: An exact effective stress law for elastic deformation of rock with fluids. J. Geophys. Res. 76, 6414–6419 (1971)

    Article  Google Scholar 

  18. 18

    Sun D., Sheng D., Sloan S.W.: Elastoplastic modelling of hydraulic and stress–strain behaviour of unsaturated soils. Mech. Mater. 39, 212–221 (2007)

    Article  Google Scholar 

  19. 19

    Anandarajah A.: Computational Methods in Elasticity and Plasticity: Solids and Porous Media. Springer, New York (2010)

    Book  Google Scholar 

  20. 20

    Scholts L., Hicher P.-Y., Nicot F., Chareyre B., Darve F.: On the capillary stress tensor in wet granular materials. Int. J. Numer. Anal. Methods Geomech. 33, 1289–1313 (2009). doi:10.1002/nag.767

    Article  Google Scholar 

  21. 21

    Xie S., Shao J.: Experimental investigation and poroplastic modelling of saturated porous geomaterials. Int. J. Plast 39, 27–45 (2012). doi:10.1016/j.ijplas.2012.05.007

    Article  Google Scholar 

  22. 22

    Sheng, D., Zhang, S., Yu, Z.: Unanswered questions in unsaturated soil mechanics, Science China Technological Sciences, pp. 1–16 (2013)

  23. 23

    Nedjar B.: Poromechanics approach for modeling closed-cell porous materials with soft matrices. Int. J. Solids Struct. 50, 3184–3189 (2013)

    Article  Google Scholar 

  24. 24

    Jaegar J., Cook N.: Fundamentals of Rock Mechanics. Chapman Hall, New York (1976)

    Google Scholar 

  25. 25

    Goodman R.: Introduction to Rock Mechanics. Wiley, New York (1980)

    Google Scholar 

  26. 26

    Buhan P.D., Dormieux L.: On the validity of the effective stress concept for assessing the strength of saturated porous materials: a homogenization approach. J. Mech. Phys. Solids 44, 1649–1667 (1996)

    Article  Google Scholar 

  27. 27

    Barthelemy, J., Dormieux, L.: On the existence of an effective stress in poroplasticity. In: Poromechanics III-Biot Centennial (1905–2005): Proceedings of the 3rd Biot conference on poromechanics, 24–27 May 2005, Norman, Oklahoma, USA, Vol. 1000, Taylor & Francis, 2010

  28. 28

    Coussy O.: Mechanics of Porous Continua. Wiley, Chichester (1995)

    MATH  Google Scholar 

  29. 29

    Lomov I., Hiltl M., Vorobiev O.Y., Glenn L.: Dynamic behavior of berea sandstone for dry and water-saturated conditions. Int. J. Impact Eng. 26, 465–474 (2001)

    Article  Google Scholar 

  30. 30

    Wilmanski K.: A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials. Soil Dyn. Earthq. Eng. 26, 509–536 (2006)

    Article  Google Scholar 

  31. 31

    Cooper, P.W.: Scaling and explosives engineering applications. Sandia National Laboratories Short Course XPL204

  32. 32

    Grove B., Heiland J., Walton I.: Geologic materials’ response to shaped charge penetration. Int. J. Impact Eng. 35, 1563–1566 (2008)

    Article  Google Scholar 

  33. 33

    Lee N.-S., Bathe K.-J.: Error indicators and adaptive remeshing in large deformation finite element analysis. Finite Elem. Anal. Des. 16, 99–139 (1994). doi:10.1016/0168-874X(94)90044-2

    Article  MathSciNet  MATH  Google Scholar 

  34. 34

    Antoun T., Glenn L., Walton O., Goldstein P., Lomov I., Liu B.: Simulation of hypervelocity penetration in limestone. Int. J. Impact Eng. 33, 45–52 (2006)

    Article  Google Scholar 

  35. 35

    Liu W.K., Belytschko T., Chang H.: An arbitrary Lagrangian-Eulerian finite element method for path-dependent materials. Comput. Methods Appl. Mech. Eng. 58, 227–245 (1986)

    Article  MATH  Google Scholar 

  36. 36

    Bardenhagen S., Brackbill J., Sulsky D.: The material-point method for granular materials. Comput. Methods. Appl. Mech. Eng. 187, 529–541 (2000)

    Article  MATH  Google Scholar 

  37. 37

    Guilkey, J., Harman, T., Luitjens, J., Schmidt, J., Thornock, J., Davison de St. Germain, J., Shankar, S., Peterson, J., Brownlee, C.: Uintah user guide version 1.1, SCI Institute, University of Utah UUSCI-2009-007

  38. 38

    Carroll M.M., Holt A.C.: Static and dynamic pore collapse relations for ductile porous materials. J. Appl. Phys. 43, 1626–1636 (1972)

    Article  Google Scholar 

  39. 39

    de Borst R., Pamin J., Geers M.G.: On coupled gradient-dependent plasticity and damage theories with a view to localization analysis. Eur. J. Mech. A Solids 18, 939–962 (1999)

    Article  MATH  Google Scholar 

  40. 40

    Morris J., Lomov I., Glenn L.: A constitutive model for stress-induced permeability and porosity evolution of berea sandstone. J. Geophys. Res. 108, 2485 (2003)

    Article  Google Scholar 

  41. 41

    Gassmann F.: Elasticity of porous media. Vierteljahrsschrift der Naturforschenden Gesellschaft 96, 1–23 (1951)

    MathSciNet  Google Scholar 

  42. 42

    Hart D.J., Wang H.F.: Laboratory measurements of a complete set of poroelastic moduli for berea sandstone and indiana limestone. J. Geophys. Res. Solid Earth (1978–2012) 100, 17741–17751 (1995)

    Article  Google Scholar 

  43. 43

    Pietruszczak S., Pande G.: On the mechanical response of saturated cemented materials—part i: theoretical considerations. Int. J. Numer. Anal. Methods Geomech. 19, 555–562 (1995)

    Article  MATH  Google Scholar 

  44. 44

    Simo J., Hughes T.: Computational Inelasticity, Interdisciplinary Applied Mathematics: Mechanics and Materials. Springer, New York (1998)

    Google Scholar 

  45. 45

    Brannon R., Fossum A., Strack O.: Kayenta: theory and user’s guide. Sandia Rep. 2009, 393–397 (2009)

    Google Scholar 

  46. 46

    Li Y.-H.: Equation of state of water and sea water. J. Geophys. Res. 72, 2665–2678 (1967)

    Article  Google Scholar 

  47. 47

    Sulsky D., Zhou S., Schreyer H.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87, 236–252 (1995)

    Article  MATH  Google Scholar 

  48. 48

    Bardenhagen S., Kober E.: The generalized interpolation material point method. Comput. Model. Eng. Sci. 5, 477–496 (2004)

    Google Scholar 

  49. 49

    Austin, D.: Verification and validation of a geomodel aimed at simulating wellbore completion via shaped-charge jet perforation of metal and penetration into sandstone, Master’s thesis, University of Utah (2013)

  50. 50

    Homel, M., Sadeghirad, A., Austin, D., Colovos, J., Brannon, R., Guilkey, J.: Arenisca: theory and users guide, Tech. rep., University of Utah (2014)

  51. 51

    Bobich, J.K.: Experimental analysis of the extension to shear fracture transition in berea sandstone, Ph.D. thesis, Texas A&M University (2005)

  52. 52

    Burghardt J., Brannon R., Guilkey J.: A nonlocal plasticity formulation for the material point method. Comput. Methods. Appl. Mech. Eng. 225, 55–64 (2012)

    Article  MathSciNet  Google Scholar 

  53. 53

    Huang H.: Characterization of powder metal jet and penetration calculation. Procedia Eng. 58, 471–478 (2013)

    Article  Google Scholar 

  54. 54

    Burghardt, J., Leavy, B., Guilkey, J., Xue, Z., Brannon, R.: Application of uintah-mpm to shaped charge jet penetration of aluminum. In: 9th World Congress on Computational Mechanics, IOP Conference Series: Materials Science and Engineering, v.10., (2010)

  55. 55

    Fuller T., Brannon R.: On the effects of deformation induced anisotropy in isotropic materials. Int. J. Numer. Anal. Methods Geomech. 37, 1079–1094 (2013)

    Article  Google Scholar 

  56. 56

    Mast C., Mackenzie-Helnwein P., Arduino P., Miller G., Shin W.: Mitigating kinematic locking in the material point method. J. Comput. Phys. 231, 5351–5373 (2012)

    Article  MathSciNet  Google Scholar 

  57. 57

    Austin, D.M.: Verification and validation of a geomodel aimed at simulating wellbore completion via shaped-charge jet perforation of metal and penetration into sandstone, The University of Utah, 2013

  58. 58

    Pivonka P., Willam K.: The effect of the third invariant in computational plasticity. Eng. Comput. 20, 741–753 (2003)

    Article  MATH  Google Scholar 

  59. 59

    Schreyer H.L., Bean J.E.: Third-invariant model for rate-dependent soils. J. Geotech. Eng. 111, 181–192 (1985)

    Article  Google Scholar 

  60. 60

    Homel, M.A.: Elastoplastic constitutive modeling of fluid-saturated porous materials with new methods for numerical solution and mesoscale validation. Dissertation, University of Utah (2015)

  61. 61

    Harvey, J., Grove, B., Zhan, L., et al.: Stressed rock penetration depth correlation. In: Paper SPE 151846 presented at the 2012 SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, LA, 2012

  62. 62

    Fuller, T.J., Brannon, R.M., Strack, O.E., Bishop, J.E.: Initial inclusion of thermodynamic considerations in Kayenta. Sandia National Laboratories Technical Report SAND2010-4687 (2010)

  63. 63

    Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics. Wiley, New York (1985)

  64. 64

    Vorobiev O.Y., Liu B., Lomov I., Antoun T.: Simulation of penetration into porous geologic media. Int. J. Impact Eng. 34, 721–731 (2007)

    Article  Google Scholar 

  65. 65

    Brannon R.M.: Elements of Phenomenological Plasticity. Springer, Berlin (2007)

    Google Scholar 

  66. 66

    Homel, M.A., Guilkey J.E., Brannon, R.M.: Numerical solution for plasticity models using consistency bisection and a transformed-space closest-point return: A nongradient solution method. Comput. Mech. (2015) (Accepted)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael A. Homel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Homel, M.A., Guilkey, J.E. & Brannon, R.M. Continuum effective-stress approach for high-rate plastic deformation of fluid-saturated geomaterials with application to shaped-charge jet penetration. Acta Mech 227, 279–310 (2016). https://doi.org/10.1007/s00707-015-1407-2

Download citation

Keywords

  • Pore Pressure
  • Bulk Modulus
  • Volumetric Strain
  • Berea Sandstone
  • Material Point Method