Skip to main content
Log in

The roles of crystallographic orientation, high-angle grain boundary, and indenter diameter during nano-indentation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation of nano-indentation of single-crystal and bicrystal FCC aluminum is performed. The role of crystallographic orientation during nano-indentation of single-crystal aluminum is assessed. Then, the influence of the presence of a grain boundary is analyzed by adding high-angle symmetric tilt boundaries of Σ5<210>/(100) and Σ5<310>/(100) parallel to the surface on which the indentation is performed. Furthermore, in both cases, the size of the indenter is changed to investigate how the surface curvature of the indenter affects the nano-indentation process. The results suggest that in each crystallographic orientation, the presence of a grain boundary increases the required force for indentation, while the distance of a grain boundary from the indentation surface could affect the increase in the required force. Simulations prove that the grain boundary acts as a source of generation and emission of dislocations and restricts the penetration of the indenter by limiting the slip band formation and plastic deformation. The dislocation emission from the grain boundary restricts the penetration of the indenter and limits the formation of the octahedral slip systems of type {111}<110> and consequently increases the required force for indentation in bicrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salehinia I., Wang J., Bahr D.F., Zbib H.M.: Molecular dynamics simulations of plastic deformation in Nb/NbC multilayers. Int. J. Plast. 59(0), 119–132 (2014). doi:10.1016/j.ijplas.2014.03.010

    Article  Google Scholar 

  2. Matsumoto R., Nakagaki M., Nakatani A., Kitagawa H.: Molecular-dynamics study on crack growth behavior relevant to crystal nucleation in amorphous metal. CMES 9, 75–84 (2005)

    Google Scholar 

  3. Yu, H.-L., Lu, C., Tieu, K., Deng, G.-Y.: A numerical model for simulation of crack initiation around inclusion under tensile load. J. Comput. Theor. Nanosci. 9, 1745–1749 (2012)

  4. Tomohito T., Yoji S.: Atomistic simulations of elastic deformation and dislocation nucleation in Al under indentation-induced stress distribution. Model. Simul. Mater. Sci. Eng. 14(5), S55 (2006)

    Article  Google Scholar 

  5. Verkhovtsev A.V., Yakubovich A.V., Sushko G.B., Hanauske M., Solov’yov A.V.: Molecular dynamics simulations of the nanoindentation process of titanium crystal. Comput. Mater. Sci. 76(0), 20–26 (2013). doi:10.1016/j.commatsci.2013.02.015

    Article  Google Scholar 

  6. Huo D., Liang Y., Cheng K.: An investigation of nanoindentation tests on the single crystal copper thin film via an atomic force microscope and molecular dynamics simulation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 221(2), 259–266 (2007). doi:10.1243/0954406jmes448

    Article  Google Scholar 

  7. Nair A.K., Parker E., Gaudreau P., Farkas D., Kriz R.D.: Size effects in indentation response of thin films at the nanoscale: a molecular dynamics study. Int. J. Plast. 24(11), 2016–2031 (2008). doi:10.1016/j.ijplas.2008.01.007

    Article  MATH  Google Scholar 

  8. Kim K.J., Yoon J.H., Cho M.H., Jang H.: Molecular dynamics simulation of dislocation behavior during nanoindentation on a bicrystal with a Σ = 5 (210) grain boundary. Mater. Lett. 60(28), 3367–3372 (2006). doi:10.1016/j.matlet.2006.03.020

    Article  Google Scholar 

  9. Fang T.-H., Wu J.-H.: Molecular dynamics simulations on nanoindentation mechanisms of multilayered films. Comput. Mater. Sci. 43(4), 785–790 (2008). doi:10.1016/j.commatsci.2008.01.066

    Article  Google Scholar 

  10. Liao M.-L., Weng M.-H., Ju S.-P., Chiang H.-J.: Molecular dynamics simulation on the nanoindentation behavior of a copper bilayered thin film. Chin. J. Catal. 29(11), 1122–1126 (2008). doi:10.1016/S1872-2067(09)60012-7

    Article  Google Scholar 

  11. Plimpton S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  MATH  Google Scholar 

  12. Stukowski A.: Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010). doi:10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  13. Mishin, Y., Farkas, D., Mehl, M.J., Papaconstantopoulos, D.A.: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59(5), 3393 (1999)

  14. Nejadseyfi O., Shokuhfar A.: Molecular dynamics simulation of the effects of crystal orientation and grain boundary misorientation angle on the nano-crack growth. J. Comput. Theor. Nanosci. 11(10), 2199–2207 (2014)

    Article  Google Scholar 

  15. Liu T., Groh S.: Atomistic modeling of the crack–void interaction in α-Fe. Mater. Sci. Eng. A 609(0), 255–265 (2014). doi:10.1016/j.msea.2014.05.005

    Article  Google Scholar 

  16. Yuan Y., Sun T., Zhang J., Yan Y.: Molecular dynamics study of void effect on nanoimprint of single crystal aluminum. Appl. Surf. Sci. 257(16), 7140–7144 (2011). doi:10.1016/j.apsusc.2011.03.073

    Article  Google Scholar 

  17. Meguid S.A., Al Jahwari F.: Modeling the pullout test of nanoreinforced metallic matrices using molecular dynamics. Acta Mech. 225(4–5), 1267–1275 (2014). doi:10.1007/s00707-013-1065-1

    Article  MATH  Google Scholar 

  18. Ju S.P., Wang C.T., Chien C.H., Huang J.C., Jian S.R.: The nanoindentation responses of nickel surfaces with different crystal orientations. Mol. Simul. 33(11), 905–917 (2007). doi:10.1080/08927020701392954

    Article  Google Scholar 

  19. Li, D., Wang, F., Yang, Z., Zhao, Y.: How to identify dislocations in molecular dynamics simulations? Sci. China Phys. Mech. Astron. 57(12), 2177–2187 (2014). doi:10.1007/s11433-014-5617-8

  20. Muhammad I., Fayyaz H., Muhammad R., Ahmad S.A.: Dynamic characteristics of nanoindentation in Ni: a molecular dynamics simulation study. Chin. Phys. B 21(11), 116201 (2012)

    Article  Google Scholar 

  21. Liang Y., Wang Q., Yu N., Chen J., Zha F., Sun Y.: Study of dislocation nucleation mechanism in nanoindentation process. Nanosci. Nanotechnol. Lett. 5(5), 536–541 (2013)

    Article  Google Scholar 

  22. Kim K.J., Yoon J.H., Cho M.H., Jang H.: Molecular dynamics simulation of dislocation behavior during nanoindentation on a bicrystal with a <i>Σ</i> = 5 (210) grain boundary. Mater. Lett. 60(28), 3367–3372 (2006)

  23. Li J., Soh A.K.: Toughening of nanocrystalline materials through shear-coupled migration of grain boundaries. Scr. Mater. 69(4), 283–286 (2013). doi:10.1016/j.scriptamat.2013.04.014

    Article  Google Scholar 

  24. Farkas D., Frøseth A., Van Swygenhoven H.: Grain boundary migration during room temperature deformation of nanocrystalline Ni. Scr. Mater. 55(8), 695–698 (2006). doi:10.1016/j.scriptamat.2006.06.032

    Article  Google Scholar 

  25. Wan L., Wang S.: Shear response of the Σ9<110>{221} symmetric tilt grain boundary in fcc metals studied by atomistic simulation methods. Phys. Rev. B Condens. Matter 82(21), 214112 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Nejadseyfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejadseyfi, O., Shamsborhan, M., Azimi, A. et al. The roles of crystallographic orientation, high-angle grain boundary, and indenter diameter during nano-indentation. Acta Mech 226, 3823–3829 (2015). https://doi.org/10.1007/s00707-015-1406-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1406-3

Keywords

Navigation