Yu N., Polycarpou A.A.: Combining and contacting of two rough surfaces with asymmetric distribution of asperity heights. J. Tribol. Trans. ASME 126, 225–232 (2004)
Article
Google Scholar
Jackson R.L., Green I.: On the modeling of elastic contact between rough surfaces. Tribol. Trans. 54, 300–314 (2011)
Article
Google Scholar
Greenwood J.A., Williamson J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300–319 (1966)
Article
Google Scholar
Medina S., Nowell D., Dini D.: Analytical and numerical models for tangential stiffness of rough elastic contacts. Tribol. Lett. 49, 103–115 (2013)
Article
Google Scholar
Vakis A.I., Polycarpou A.A.: An advanced rough surface continuum-based contact and sliding model in the presence of molecularly thin lubricant. Tribol. Lett. 49, 227–238 (2013)
Article
Google Scholar
Song Z., Komvopoulos K.: Adhesive contact of an elastic semi-infinite solid with a rigid rough surface: Strength of adhesion and contact instabilities. Int. J. Solids Struct. 51, 1197–1207 (2014)
Article
Google Scholar
Vakis A.I.: Asperity interaction and substrate deformation in statistical summation models of contact between rough surfaces. J. Appl. Mech. Trans. ASME 81, 041012–2 (2014)
Longuet-Higgins M.S.: The statistical analysis of a random, moving surface. Philos. Trans. R. Soc. Lond. Ser. A 249, 321–387 (1957)
MATH
MathSciNet
Article
Google Scholar
Kotwal C.A., Bhushan B.: Contact analysis of non-Gaussian surfaces for minimum static and kinetic friction and wear, Tribol. Transaction 39, 890–898 (1996)
Google Scholar
McCool J.I.: Non-Gaussian effects in microcontact. Int. J. Mach. Tools Manuf. 32, 115–123 (1992)
Article
Google Scholar
Yu N., Polycarpou A.A.: Contact of rough surfaces with asymmetric distribution of asperity heights. J. Tribol. Trans. ASME 124, 367–376 (2002)
Article
Google Scholar
Liou J.L., Lin F.J.: A microcontact non-Gaussian surface roughness model accounting for elastic recovery. J. Appl. Mech. Trans. ASME 75, 031015 (2008)
Article
Google Scholar
Yuan Y.H., Du H.J., Chow K.S., Zhang M.S., Yu S.K., Liu B.: Performance analysis of an integrated piezoelectric ZnO sensor for detection of head–disk contact. Microsyst. Technol. 19, 1449–1455 (2013)
Article
Google Scholar
Loboda V., Sheveleva A., Lapusta Y.: An electrically conducting interface crack with a contact zone in a piezoelectric bimaterial. Int. J. Solids Struct. 51, 63–73 (2014)
Article
Google Scholar
Yang F.Q.: Boussinesq contact of transversely isotropic piezoelectric materials. Int. J. Appl. Electrom. 43, 347–352 (2013)
Article
Google Scholar
Wu Y.F., Yu H.Y., Chen W.Q.: Indentation responses of piezoelectric layered half-space. Smart Mater. Struct. 22, 015007 (2013)
Article
Google Scholar
Hüeber S., Matei A., Wohlmuth B.: A contact problem for electro-elastic materials. ZAMM. Z. Angew. Math. Mech. 93, 789–800 (2013)
MATH
MathSciNet
Article
Google Scholar
Beom H.G.: A unified representation of plane solutions for anisotropic piezoelectric elasticity. Int. J. Eng. Sci. 72, 22–35 (2013)
Article
Google Scholar
Chung M.Y.: Green’s function for an anisotropic piezoelectric half-space bonded to a thin piezoelectric layer. Arch. Mech. 66, 3–17 (2014)
MATH
Google Scholar
Zhou Y.T., Lee K.Y.: Frictional contact of anisotropic piezoelectric materials indented by flat and semi-parabolic stamps. Arch. Appl. Mech. 83, 673–695 (2013)
Article
Google Scholar
Wang B.L., Mai Y.W., Sun Y.G.: Surface cracking of a piezoelectric strip bonded to an elastic substrate (Mode I crack problem). Arch. Appl. Mech. 73, 434–447 (2003)
MATH
Article
Google Scholar
Sneddon I.N.: Mixed Boundary Value Problems in Potential Theory. North-Holland Publishing Company, Amsterdam (1966)
MATH
Google Scholar
Carbone G., Mangialardi L.: Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface. J. Mech. Phys. Solids 52, 1267–1287 (2004)
MATH
Article
Google Scholar