Skip to main content

A general solution approach to dynamic contact between a sinusoidal rigid solid and piezoelectric materials with anisotropy

Abstract

Applying the operator method, general solutions for dynamic governing equations involving anisotropic piezoelectric materials are derived. Based on the general solutions, a rigid solid with a sinusoidal surface moving along the surface of anisotropic piezoelectric materials is concerned. Dual series equations are obtained and solved analytically. Then, the electro-elastic fields are determined in series forms. A full contact problem leads to more simple forms. Numerical analysis is performed for the anisotropic piezoelectric material \({0^{\circ }}\) Graphite-epoxy, in which an illustrative example concerning the vertical mechanical displacement on the surface is displayed to validate the present approach. Results demonstrate that the contact behavior is considerably affected by both the velocity and material properties.

This is a preview of subscription content, access via your institution.

References

  1. Yu N., Polycarpou A.A.: Combining and contacting of two rough surfaces with asymmetric distribution of asperity heights. J. Tribol. Trans. ASME 126, 225–232 (2004)

    Article  Google Scholar 

  2. Jackson R.L., Green I.: On the modeling of elastic contact between rough surfaces. Tribol. Trans. 54, 300–314 (2011)

    Article  Google Scholar 

  3. Greenwood J.A., Williamson J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300–319 (1966)

    Article  Google Scholar 

  4. Medina S., Nowell D., Dini D.: Analytical and numerical models for tangential stiffness of rough elastic contacts. Tribol. Lett. 49, 103–115 (2013)

    Article  Google Scholar 

  5. Vakis A.I., Polycarpou A.A.: An advanced rough surface continuum-based contact and sliding model in the presence of molecularly thin lubricant. Tribol. Lett. 49, 227–238 (2013)

    Article  Google Scholar 

  6. Song Z., Komvopoulos K.: Adhesive contact of an elastic semi-infinite solid with a rigid rough surface: Strength of adhesion and contact instabilities. Int. J. Solids Struct. 51, 1197–1207 (2014)

    Article  Google Scholar 

  7. Vakis A.I.: Asperity interaction and substrate deformation in statistical summation models of contact between rough surfaces. J. Appl. Mech. Trans. ASME 81, 041012–2 (2014)

  8. Longuet-Higgins M.S.: The statistical analysis of a random, moving surface. Philos. Trans. R. Soc. Lond. Ser. A 249, 321–387 (1957)

    MATH  MathSciNet  Article  Google Scholar 

  9. Kotwal C.A., Bhushan B.: Contact analysis of non-Gaussian surfaces for minimum static and kinetic friction and wear, Tribol. Transaction 39, 890–898 (1996)

    Google Scholar 

  10. McCool J.I.: Non-Gaussian effects in microcontact. Int. J. Mach. Tools Manuf. 32, 115–123 (1992)

    Article  Google Scholar 

  11. Yu N., Polycarpou A.A.: Contact of rough surfaces with asymmetric distribution of asperity heights. J. Tribol. Trans. ASME 124, 367–376 (2002)

    Article  Google Scholar 

  12. Liou J.L., Lin F.J.: A microcontact non-Gaussian surface roughness model accounting for elastic recovery. J. Appl. Mech. Trans. ASME 75, 031015 (2008)

    Article  Google Scholar 

  13. Yuan Y.H., Du H.J., Chow K.S., Zhang M.S., Yu S.K., Liu B.: Performance analysis of an integrated piezoelectric ZnO sensor for detection of head–disk contact. Microsyst. Technol. 19, 1449–1455 (2013)

    Article  Google Scholar 

  14. Loboda V., Sheveleva A., Lapusta Y.: An electrically conducting interface crack with a contact zone in a piezoelectric bimaterial. Int. J. Solids Struct. 51, 63–73 (2014)

    Article  Google Scholar 

  15. Yang F.Q.: Boussinesq contact of transversely isotropic piezoelectric materials. Int. J. Appl. Electrom. 43, 347–352 (2013)

    Article  Google Scholar 

  16. Wu Y.F., Yu H.Y., Chen W.Q.: Indentation responses of piezoelectric layered half-space. Smart Mater. Struct. 22, 015007 (2013)

    Article  Google Scholar 

  17. Hüeber S., Matei A., Wohlmuth B.: A contact problem for electro-elastic materials. ZAMM. Z. Angew. Math. Mech. 93, 789–800 (2013)

    MATH  MathSciNet  Article  Google Scholar 

  18. Beom H.G.: A unified representation of plane solutions for anisotropic piezoelectric elasticity. Int. J. Eng. Sci. 72, 22–35 (2013)

    Article  Google Scholar 

  19. Chung M.Y.: Green’s function for an anisotropic piezoelectric half-space bonded to a thin piezoelectric layer. Arch. Mech. 66, 3–17 (2014)

    MATH  Google Scholar 

  20. Zhou Y.T., Lee K.Y.: Frictional contact of anisotropic piezoelectric materials indented by flat and semi-parabolic stamps. Arch. Appl. Mech. 83, 673–695 (2013)

    Article  Google Scholar 

  21. Wang B.L., Mai Y.W., Sun Y.G.: Surface cracking of a piezoelectric strip bonded to an elastic substrate (Mode I crack problem). Arch. Appl. Mech. 73, 434–447 (2003)

    MATH  Article  Google Scholar 

  22. Sneddon I.N.: Mixed Boundary Value Problems in Potential Theory. North-Holland Publishing Company, Amsterdam (1966)

    MATH  Google Scholar 

  23. Carbone G., Mangialardi L.: Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface. J. Mech. Phys. Solids 52, 1267–1287 (2004)

    MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.-W. Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, YT., Kim, TW. A general solution approach to dynamic contact between a sinusoidal rigid solid and piezoelectric materials with anisotropy. Acta Mech 226, 3865–3879 (2015). https://doi.org/10.1007/s00707-015-1398-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1398-z

Keywords

  • Contact Problem
  • Piezoelectric Material
  • Contact Region
  • Series Form
  • Asperity Height