Skip to main content
Log in

Torsional buckling and post-buckling behavior of eccentrically stiffened functionally graded toroidal shell segments surrounded by an elastic medium

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The nonlinear buckling and post-buckling problems of functionally graded stiffened toroidal shell segments surrounded by an elastic medium under torsion based on an analytical approach are investigated. The rings and stringers are attached to the shell, and material properties of the shell are assumed to be continuously graded in the thickness direction. The classical shell theory with the geometrical nonlinearity in von Kármán sense and the smeared stiffeners technique are applied to establish theoretical formulations. The three-term approximate solution of deflection is chosen more correctly, and the explicit expression to find critical load and post-buckling torsional load-deflection curves is given. The effects of geometrical parameters and the effectiveness of stiffeners on the stability of the shell are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koizumi M.: The concept of FGM, ceramic transactions. Funct. Grad. Mater. 34, 3–10 (1993)

    Google Scholar 

  2. Sofiyev A.H., Kuruoglu N.: Torsional vibration and buckling of the cylindrical shell with functionally graded coatings surrounded by an elastic medium. Compos. Part B 45, 1133–1142 (2013)

    Article  Google Scholar 

  3. Najafov A.M., Sofiyev A.H., Kuruoglu N.: Torsional vibration and stability of functionally graded orthotropic cylindrical shells on elastic foundation. Meccanica 48, 829–840 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Batra R.C.: Torsion of a functionally graded cylinder. AIAA J. 44, 1363–1365 (2006)

    Article  Google Scholar 

  5. Shen H.S.: Torsional buckling and postbuckling of FGM cylindrical shells in thermal environments. Int. J. Non-linear Mech. 44, 644–657 (2009)

    Article  MATH  Google Scholar 

  6. Sofiyev A.H., Schnack E.: The stability of functionally graded cylindrical shells under linearly increasing dynamic torsional loading. Eng. Struct. 26, 1321–1331 (2004)

    Article  Google Scholar 

  7. Huang H., Han Q.: Nonlinear buckling of torsion-loaded functionally graded cylindrical shells in thermal environment. Eur. J. Mech. A Solids 29, 42–48 (2010)

    Article  MathSciNet  Google Scholar 

  8. Wang H.M., Liu C.B., Ding H.J.: Exact solution and transient behavior for torsional vibration of functionally graded finite hollow cylinders. Acta Mech. Sin. 25, 555–563 (2009)

    Article  MATH  Google Scholar 

  9. Arghavan S., Hematiyan M.R.: Torsion of functionally graded hollow tubes. Eur. J. Mech. A Solids 28, 551–559 (2009)

    Article  MATH  Google Scholar 

  10. Tan D.: Torsional buckling analysis of thin and thick shells of revolution. Int. J. Solids Struct. 37, 3055–3078 (2000)

    Article  MATH  Google Scholar 

  11. Dung D.V., Hoa L.K.: Research on nonlinear torsional buckling and post-buckling of eccentrically stiffened functionally graded thin circular cylindrical shells. Compos. Part B 51, 300–309 (2013)

    Article  Google Scholar 

  12. Sofiyev A.H., Adiguzel S.S.: Torsional stability of cylindrical shells with functionally graded middle layer on the Winkler elastic foundation. J. Solid Mech. 3, 218–227 (2011)

    Google Scholar 

  13. Zhang P., Fu Y.: Torsional buckling of elastic cylinders with hard coatings. Acta Mech. 220, 275–287 (2011)

    Article  MATH  Google Scholar 

  14. Dung D.V., Hoa L.K.: Nonlinear torsional buckling and post-buckling of eccentrically stiffened FGM cylindrical shells in thermal environment. Compos. Part B 69, 378–388 (2015)

    Article  Google Scholar 

  15. Huang H., Han Q.: Nonlinear buckling and postbuckling of heated functionally graded cylindrical shells under combined axial compression and radial pressure. Int. J. Non-linear Mech. 44, 209–218 (2009)

    Article  MATH  Google Scholar 

  16. Bich D.H., Phuong N.T., Tung H.V.: Buckling of functionally graded conical panels under mechanical loads. Compos. Struct. 91, 1379–1384 (2012)

    Article  Google Scholar 

  17. Sofiyev A.H.: Non-linear buckling behavior of FGM truncated conical shells subjected to axial load. Int. J. Non-linear Mech. 46, 711–719 (2011)

    Article  MathSciNet  Google Scholar 

  18. Duc N.D., Quan T.Q.: Nonlinear postbuckling of imperfect eccentrically stiffened P-FGM double curved thin shallow shells on elastic foundations in thermal environments. Compos. Struct. 106, 590–600 (2013)

    Article  Google Scholar 

  19. Duc N.D., Thang P.T.: Nonlinear response of imperfect eccentrically stiffened ceramic–metal–ceramic FGM thin circular cylindrical shells surrounded on elastic foundations and subjected to axial compression. Compos. Struct. 110, 200–206 (2014)

    Article  Google Scholar 

  20. Shen H.S.: Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments. Compos. Sci. Technol. 62, 977–987 (2002)

    Article  Google Scholar 

  21. Shariyat M.: Dynamic buckling of suddenly loaded imperfect hybrid FGM cylindrical shells with temperature-dependent material properties under thermo-electro-mechanical loads. Int. J. Mech. Sci. 50, 1561–1571 (2008)

    Article  Google Scholar 

  22. Liew K.M.: Postbuckling responses of functionally graded cylindrical shells under axial compression and thermal loads. Compos. Part B 43, 1621–1630 (2012)

    Article  Google Scholar 

  23. Kadoli R., Ganesan N.: Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition. J. Sound Vib. 289, 450–480 (2006)

    Article  Google Scholar 

  24. Huang H., Han Q., Wei D.: Buckling of FGM cylindrical shells subjected to pure bending load. Compos. Struct. 93, 2945–2952 (2011)

    Article  Google Scholar 

  25. Sofiyev A.H., Kuruoglu N., Turkmen M.: Buckling of FGM hybrid truncated conical shells subjected to hydrostatic pressure. Thin-Walled Struct. 47, 61–72 (2009)

    Article  Google Scholar 

  26. Zenkour A.M., Sobhy M.: Thermal buckling of various types of FGM sandwich plates. Compos. Struct. 93, 93–102 (2010)

    Article  Google Scholar 

  27. Winkler E.: Die Lehre von der Elasticitaet und Festigkeit. Dominicus, Prague (1867)

    MATH  Google Scholar 

  28. Pasternak, P.L.: On a new method of analysis of an elastic foundation by means of two foundation constants. Gos. Izd. Lit. po strait i Arkh, Moscow, Russia; 1954 (In Russian)

  29. Bagherizadeh E., Kiani Y., Eslami M.R.: Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation. Compos. Struct. 93, 3063–3071 (2011)

    Article  Google Scholar 

  30. Shen H.S.: Postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium. Int. J. Mech. Sci. 51, 372–383 (2009)

    Article  Google Scholar 

  31. Shen H.S.: Postbuckling of internal pressure loaded FGM cylindrical shells surrounded by an elastic medium. Eur. J. Mech. A Solids 29, 448–460 (2010)

    Article  Google Scholar 

  32. Sofiyev A.H.: Buckling analysis of FGM circular shells under combined loads and resting on the Pasternak type elastic foundation. Mech. Res. Commun. 37, 539–544 (2010)

    Article  MATH  Google Scholar 

  33. Sofiyev A.H.: Thermal buckling of FGM shells resting on a two-parameter elastic foundation. Thin-Walled Struct. 49, 1304–1311 (2011)

    Article  Google Scholar 

  34. Sofiyev A.H.: The effect of elastic foundations on the nonlinear buckling behavior of axially compressed heterogeneous orthotropic truncated conical shells. Thin-Walled Struct. 80, 178–191 (2014)

    Article  Google Scholar 

  35. Sofiyev A.H., Kuruoglu N.: Non-linear buckling of an FGM truncated conical shell surrounded by an elastic medium. Int. J. Press. Vessels Pip. 107, 38–49 (2013)

    Article  Google Scholar 

  36. Stein M., McElman J. A.: Buckling of segments of toroidal shells. AIAA J. 3, 1704–1709 (1965)

    Article  Google Scholar 

  37. Hutchinson John W.: Initial post-buckling behavior of toroidal shell segments. J. Solid Struct. 3, 97–115 (1967)

    Article  Google Scholar 

  38. Parnell T.K.: Numerical improvement of asymptotic solution for shells of revolution with application to toroidal shell segments. Comput. Struct. 16, 109–117 (1983)

    Article  MATH  Google Scholar 

  39. Brush D.O., Almorth B.O.: Buckling of Bars, Plates and Shells. Mc Graw-Hill, New York (1975)

    MATH  Google Scholar 

  40. Nash W.A.: An experimental analysis of the buckling of thin initially imperfect cylindrical shells subject to torsion. Proc. Soc. Exp. Stress Anal. 16, 55–68 (1959)

    Google Scholar 

  41. Ekstrom R.E.: Buckling of cylindrical shells under combined torsion and hydrostatic pressure. Exp. Mech. 3, 192–197 (1963)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Gia Ninh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ninh, D.G., Bich, D.H. & Kien, B.H. Torsional buckling and post-buckling behavior of eccentrically stiffened functionally graded toroidal shell segments surrounded by an elastic medium. Acta Mech 226, 3501–3519 (2015). https://doi.org/10.1007/s00707-015-1391-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1391-6

Keywords

Navigation