Skip to main content

Advertisement

Log in

Probabilistic analysis of mechanical behaviour of mandibular trabecular bone using a calibrated stochastic homogenization model

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Surgical success of drilling in oral implantology depends on the sense of force on the fingers or feeling of a dental clinician, which is related to the quality of trabecular bone in the jawbone expressed by apparent mechanical characteristics. As the mechanical properties of trabecular bone depend on the bone volume fraction, microstructure, and many other factors closely related to individual differences, a probabilistic numerical procedure to assess drilling force is proposed. Using a micro-CT-based jawbone model, a first-order perturbation-based stochastic homogenization method was employed to estimate the possible scattering of apparent mechanical properties of the trabecular bone region. The complicated drilling problem was simplified to sequential linear static FEAs, to which the predicted apparent Young’s modulus and shearing moduli in the drilling direction were applied. The FEAs demonstrated that the homogenized mechanical properties showed anisotropy, which might lead to differences in the drilling forces at different drilling angles. The numerically estimated drilling forces were shown by the expected value, 50 %-probability result, and 90%-probability result and revealed that one patient among two or ten patients would probably have poor bone quality. There was a remarkable difference in the drilling forces between the expected value and the 90%-probability result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrektsson T., Sennerby L., Wennerberg A.: State of the art of oral implants. Periodontol 2000 47, 15–26 (2008)

    Article  Google Scholar 

  2. Lambert P.M., Morris H.F., Ochi S.: Positive effect of surgical experience with implants on second-stage implant survival. J. Oral Maxillofac. Surg. 55, 12–18 (1997)

    Google Scholar 

  3. Reingewirtz Y., Szmukler-Moncler S., Senger B.: Influence of different parameters on bone heating and drilling time in implantology. Clin. Oral Implants Res. 8, 189–197 (1997)

    Article  Google Scholar 

  4. Augustin G., Davila S., Mihoci K., Udijak T., Vedrina D.S., Antabak A.: Thermal osteonecrosis and bone drilling parameters revisited. Arch. Orthop. Trauma Surg. 128, 71–77 (2008)

    Article  Google Scholar 

  5. Kim S.J., Yoo J., Kim Y.S., Shin S.W.: Temperature change in pig rib bone during implant site preparation by low-speed drilling. J. Appl. Oral Sci. 18, 522–527 (2010)

    Article  Google Scholar 

  6. Lekholm U., Zarb G.A.: Patient Selection and Preparation, Tissue-Integrated Prosthesis: Osseointegration in clinical dentistry, pp. 199–209. Quintessence, Chicago (1985)

    Google Scholar 

  7. Carter D.R., Hayes W.C.: The compressive behavior of bone as a two-phase porous structure. J. Bone Joint Surg. 59, 954–962 (1977)

    Google Scholar 

  8. Keyak J.H., Lee I.Y., Skinner H.B.: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures. J. Biomed. Mater. Res. 28, 1329–1336 (1994)

    Article  Google Scholar 

  9. Dempster D.W.: The contribution of trabecular architecture to cancellous bone quality. J. Bone Miner. Res. 15, 20–23 (2000)

    Article  Google Scholar 

  10. Pothuaud L., Porion P., Lespessailles E., Benhamou C.L., Levitz P.: A new method for three-dimensional skeleton graph analysis of porous media: application to trabecular bone microarchitecture. J. Microsc. 199(Part 2), 149–161 (2000)

    Article  Google Scholar 

  11. Van der Linden J.C., Birkenhäger-Frenkel D.H., Verhaar J.A.N., Weinans H.: Trabecular bone’s mechanical properties are affected by its non-uniform mineral distribution. J. Biomech. 34, 1573–1580 (2001)

    Article  Google Scholar 

  12. Sansalone V., Naili S., Bousson V., Bergot C., Peyrin F., Zarka J., Laredo J.D., Haiat G.: Determination of the heterogeneous anisotropic elastic properties of human femoral bone: from nanoscopic to organ scale. J. Biomech. 43, 1857–1863 (2010)

    Article  Google Scholar 

  13. Ashman R.B., Rho J.Y., Turner C.H.: Anatomical variation of orthotropic elastic moduli of the proximal human tibia. J. Biomech. 22, 895–900 (1989)

    Article  Google Scholar 

  14. Morgan E.F., Bayraktar H.H., Keaveny T.M.: Trabecular bone modulus–density relationships depend on anatomic site. J. Biomech. 36, 897–904 (2003)

    Article  Google Scholar 

  15. Adachi T., Tsubota K., Tomita Y., Hollister S.J.: Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. J. Biomech. Eng. 123, 403–409 (2001)

    Article  Google Scholar 

  16. Karim L., Vashishth D.: Role of trabecular microarchitecture in the formation, accumulation, and morphology of microdamage in human cancellous bone. J. Orthop. Res. 29, 1–6 (2011)

    Article  Google Scholar 

  17. Weinans H., Huiskes R., Grootenboer H.J.: The behavior of adaptive bone-remodeling simulation models. J. Biomech. 25, 1425–1441 (1992)

    Article  Google Scholar 

  18. Nakano T., Ishimoto T., Umakoshi Y., Tabata Y.: Texture of biological apatite crystallites and the related mechanical function in regenerated and pathological hard tissues. J. Hard Tissue Biol. 14, 363–364 (2005)

    Article  Google Scholar 

  19. Thomsen J.S., Ebbesen E.N., Mosekilde L.: Age-related differences between thinning of horizontal and vertical trabeculae in human lumbar bone as assessed by a new computerized method. Bone 31, 136–142 (2002)

    Article  Google Scholar 

  20. Wolfram U., Wilke H.J., Zysset P.K.: Transverse isotropic elastic properties of vertebral trabecular bone matrix measured using microindentation under dry conditions (effects of age, gender, and vertebral level). J. Mech. Med. Biol. 10, 139–150 (2010)

    Article  Google Scholar 

  21. Basaruddin K.S., Takano N., Nakano T.: Stochastic multi-scale prediction on the apparent elastic moduli of trabecular bone considering uncertainties of biological apatite (BAp) crystallite orientation and image-based modelling. Comput. Methods Biomech. Biomed. Eng. 18, 162–174 (2015)

    Article  Google Scholar 

  22. Limbert G., Van Lierde C., Muraru O.L., Walboomers X.F., Frank M., Hansson S., Middleton J., Jaecques S.: Trabecular bone strains around a dental implant and associated micromotions—a micro-CT-based three-dimensional finite element study. J. Biomech. 43, 1251–1261 (2010)

    Article  Google Scholar 

  23. Yeniyol S., Jimbo R., Marin C., Tovar N., Janal M.N., Coelho P.G.: The effect of drilling speed on early bone healing to oral implants. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 116, 550–555 (2013)

    Article  Google Scholar 

  24. Sui J., Sugita N., Ishii K., Harada K., Mitsuishi M.: Mechanistic modeling of bone-drilling process with experimental validation. J. Mater. Process. Technol. 214, 1018–1026 (2014)

    Article  Google Scholar 

  25. Mathieu V., Vayron R., Richard G., Lambert G., Naili S., Meningaud J.P., Haiat G.: Biomechanical determinants of the stability of dental implants: influence of the bone–implant interface properties. J. Biomech. 47, 3–13 (2014)

    Article  Google Scholar 

  26. Ulrich D., Van Rietbergen B., Weinans H., Ruëgsegger P.: Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J. Biomech. 31, 1187–1192 (1998)

    Article  Google Scholar 

  27. Van Rietbergen B., Müller R., Ulrich D., Ruëgsegger P., Huiskes R.: Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J. Biomech. 32, 165–173 (1999)

    Article  Google Scholar 

  28. Van Rietbergen B., Majumdar S., Newitt D., MacDonald B.: High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment. Clin. Biomech. 17, 81–88 (2002)

    Article  Google Scholar 

  29. Pistoia W., Van Rietbergen B., Laib A., Ruëgsegger P.: High-resolution three-dimensional-pQCT images can be an adequate basis for in-vivo microFE analysis of bone. J. Biomech. Eng. 123, 176–183 (2001)

    Article  Google Scholar 

  30. Jaecques S.V., Van Oosterwyck H., Muraru L., Van Cleynenbreugel T., De Smet E., Wevers M., Naert I., Vander Sloten J.: Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone. Biomaterials 25, 1683–1696 (2004)

    Article  Google Scholar 

  31. Feldkamp L.A., Goldstein S.A., Parfitt A.M., Jesion G., Kleerekoper M.: The direct examination of three-dimensional bone architecture in vitro by computed tomography. J. Bone Miner. Res. 4, 3–11 (1989)

    Article  Google Scholar 

  32. Matsunaga S., Naito H., Tamatsu Y., Takano N., Abe S., Ide Y.: Consideration of shear modulus in biomechanical analysis of peri-implant jaw bone: accuracy verification using image-based multi-scale simulation. Dental Mater. J. 32, 425–432 (2013)

    Article  Google Scholar 

  33. Tawara D., Adachi T., Takano N., Nakano T.: High-resolution micro-mechanical analysis of cancellous bone in vertebra considering bone quality (in Japanese). Jpn. J. Clin. Biomech. 29, 7–14 (2008)

    Google Scholar 

  34. Tawara D., Takano N., Adachi T., Nakano T.: Mechanical evaluation of trabecular bone of human vertebra based on multi-scale stress analysis (in Japanese). J. Jpn. Soc. Bone Morphom. 20, S100–S107 (2010)

    Google Scholar 

  35. Yoshiwara Y., Clanche M., Basaruddin K.S., Takano N., Nakano T.: Numerical study on the morphology and mechanical role of healthy and osteoporotic vertebral trabecular bone, J. Biomech. Sci. Eng. 6, 270–285 (2011)

    Article  Google Scholar 

  36. Takano N., Ohnishi Y., Zako M., Nishiyabu K.: Microstructure-based deep-drawing simulation of knitted fabric reinforced thermoplastics by homogenization theory. Int. J. Solids Struct. 38, 6333–6356 (2001)

    Article  MATH  Google Scholar 

  37. Takano N., Zako M., Okuno Y.: Multi-scale finite element analysis of porous materials and components by asymptotic homogenization theory and enhanced mesh superposition method. Model. Simul. Mater. Sci. Eng. 11, 137–156 (2003)

    Article  Google Scholar 

  38. Takano N., Fukasawa K., Nishiyabu K.: Structural strength prediction for porous titanium based on micro-stress concentration by micro-CT image-based multiscale simulation. Int. J. Mech. Sci. 52, 229–235 (2010)

    Article  Google Scholar 

  39. Hvid I., Bentzen S.M., Linde F., Mosekilde L., Pongsoipetch B.: X-ray quantitative computed tomography: the relations to physical properties of proximal tibial trabecular bone specimens. J. Biomech. 22, 837–844 (1989)

    Article  Google Scholar 

  40. Linde F., Hvid I.: The effect of constraint on the mechanical behaviour of trabecular bone specimens. J. Biomech. 22, 485–490 (1989)

    Article  Google Scholar 

  41. Keyak J.H.: Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med. Eng. Phys. 23, 165–173 (2001)

    Article  Google Scholar 

  42. Odgaard A., Linde F.: The underestimation of Young’s modulus in compressive testing of cancellous bone specimens. J. Biomech. 24, 691–698 (1991)

    Article  Google Scholar 

  43. Linde F., Hvid I., Madsen F.: The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens. J. Biomech. 25, 359–368 (1992)

    Article  Google Scholar 

  44. Kopperdahl D.L., Keaveny T.M.: Yield strain behavior of trabecular bone. J. Biomech. 31, 601–608 (1998)

    Article  Google Scholar 

  45. Wilmes B., Su Y.Y., Sadigh L., Drescher D.: Pre-drilling force and insertion torques during orthodontic mini-implant insertion in relation to root contact. J. Orofac. Orthop. 69, 51–58 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Tawara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawara, D., Nagahata, M., Takano, N. et al. Probabilistic analysis of mechanical behaviour of mandibular trabecular bone using a calibrated stochastic homogenization model. Acta Mech 226, 3275–3287 (2015). https://doi.org/10.1007/s00707-015-1381-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1381-8

Keywords

Navigation