Skip to main content
Log in

Wave reflection and refraction in rotating and initially-stressed piezoelectric crystals

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The purpose of this paper is to address the wave reflection and refraction in the rotating piezoelectric crystals subjected to a biaxial, homogeneous stress field. Besides, utilizing the inhomogeneous wave theory enables additional reflected and refracted surface waves to solve the problem of discrepancy between independent wave modes and boundary equations. A set of homogeneous equations in displacements and electric potential is derived within the rotatory coordinate system in the presence of the Coriolis and centrifugal acceleration. The performed plane example shows that there is a critical point when angular velocity equals the wave frequency, at which no quasi-longitudinal wave can be generated, reflected or refracted, and close to which the characteristics of the quasi-longitudinal wave change sharply. In addition, the presence of the Coriolis and centrifugal accelerations demonstrates noticeable influence upon the wave propagation and reflection/refraction, namely the wave velocities and attenuations, the angles of the reflected/refracted bulk waves, the reflection/refraction amplitudes and energy ratio coefficients. The analysis results also indicate that the reflected and refracted waves can transform into the type of surface wave at some incident angles. Finally, compared with the rotation effects, the waves are not sensitive to the initial stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huston R.L.: Wave propagation in rotating elastic media. AIAA J. 2, 575–576 (1964)

    Article  MathSciNet  Google Scholar 

  2. Huston R.L.: In-plane vibration of spinning disks. AIAA J. 3, 1519–1520 (1965)

    Article  Google Scholar 

  3. Schoenbe M., Censor D.: Elastic-waves in rotating media. Q. Appl. Math 31, 115–125 (1973)

    Google Scholar 

  4. Lao, B.Y.: Gyroscopic effect in surface acoustic waves. In: MacAvoy, B.R. (ed.) IEEE Ultrasonics Symposium, pp. 687–691. Boston, MA (1980)

  5. Roy Choudhuri S.K.: Electro-magneto-thermo-elastic plane waves in rotating media with thermal relaxation. Int. J. Eng. Sci. 22, 519–530 (1984)

    Article  MATH  Google Scholar 

  6. Bera R.K.: Propagation of waves in random rotating infinite magneto-thermo-visco-elastic medium. Comput. Math. Appl. 36, 85–102 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wauer J.: Waves in rotating conducting piezoelectric media. J. Acoust. Soc. Am. 106, 626–636 (1999)

    Article  Google Scholar 

  8. Destrade M., Saccomandi G.: Some results on finite amplitude elastic waves propagating in rotating media. Acta. Mech. 173, 19–31 (2004)

    Article  MATH  Google Scholar 

  9. Destrade M.: Surface acoustic waves in rotating orthorhombic crystals. Proc. R. Soc. Lond. Ser. A Math. Physical and Eng. Sci. 460, 653–665 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ting T.C.T.: Surface waves in a rotating anisotropic elastic half-space. Wave Motion 40, 329–346 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Auriault J.L.: Body wave propagation in rotating elastic media. Mech. Res. Commun. 31, 21–27 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Auriault J.-L.: Acoustics of rotating deformable saturated porous media. Transp. Porous Med. 61, 235–237 (2005)

    Article  MathSciNet  Google Scholar 

  13. Yang J.s.: A review of analyses related to vibrations of rotating piezoelectric bodies and gyroscopes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 698–706 (2005)

    Article  Google Scholar 

  14. Singh J., Tomar S.K.: Plane waves in a rotating micropolar porous elastic solid. J. Appl. Phys. 102, 074906–074907 (2007)

    Article  Google Scholar 

  15. Sharma J.N., Grover D.: Body wave propagation in rotating thermoelastic media. Mech. Res. Commun. 36, 715–721 (2009)

    Article  MATH  Google Scholar 

  16. Kumar R., Rupender: Effect of rotation in magneto-micropolar thermoelastic medium due to mechanical and thermal sources. Chaos Solitons Fractals 41, 1619–1633 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Biryukov, S.V., Schmidt, H., Weihnacht, M.: Gyroscopic effect for SAW in common piezoelectric crystals. In: Pappalardo M. (ed.) Ultrasonics Symposium (IUS), 2009 IEEE International, pp. 2133–2136. Rome, Italy (2009)

  18. Sharma J.N., Grover D., Kaur D.: Mathematical modelling and analysis of bulk waves in rotating generalized thermoelastic media with voids. Appl. Math. Model. 35, 3396–3407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wegert H., Reindl L.M., Ruile W., Mayer A.P.: On the Coriolis effect in acoustic waveguides. J. Acoust. Soc. Am. 131, 3794–3801 (2012)

    Article  Google Scholar 

  20. Prasad R., Mukhopadhyay S.: Effects of rotation on harmonic plane waves under two-temperature thermoelasticity. J. Therm. Stresses 35, 1037–1055 (2012)

    Article  Google Scholar 

  21. Kothari S., Mukhopadhyay S.: Study of harmonic plane waves in rotating thermoelastic media of type III. Math. Mech. Solids 17, 824–839 (2012)

    Article  MathSciNet  Google Scholar 

  22. Abd-Alla A.M., Yahya G.A.: Thermal stresses in infinite circular cylinder subjected to rotation. Appl. Math. Mech. Engl. Ed. 33, 1059–1078 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yuan X., Chen S.: The inhomogeneous waves in a rotating piezoelectric body. Sci. World J. 2013, 8 (2013)

    Google Scholar 

  24. Zhou Y.H., Jiang Q.: Effects of Coriolis force and centrifugal force on acoustic waves propagating along the surface of a piezoelectric half-space. Z. Angew. Math. Phys. 52, 950–965 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yuan X.: Inhomogeneous wave reflection in a rotating piezoelectric body. Acta. Mech. 226, 811–827 (2015)

    Article  MathSciNet  Google Scholar 

  26. Pao Y. H., Gamer U.: Acoustoelastic waves in orthotropic media. J. Acoust. Soc. Am. 77, 806–812 (1985)

    Article  Google Scholar 

  27. Simionescu-Panait O.: Energy estimates for Love wave in a pre-stressed layered structure. Ann. Univ. Buchar. (Math. Ser.) 4, 229–241 (2013)

    MathSciNet  Google Scholar 

  28. Gandhi N., Michaels J.E., Lee S.J.: Acoustoelastic Lamb wave propagation in biaxially stressed plates. J. Acoust. Soc. Am. 132, 1284–1293 (2012)

    Article  Google Scholar 

  29. Kuang Z.-B.: Theory of Electroelasticity. Shanghai Jiao Tong University Press, Springer-Verlag, Shanghai, Berlin Heidelberg (2014)

    Book  MATH  Google Scholar 

  30. Kuang Z.B., Yuan X.: Reflection and transmission of waves in pyroelectric and piezoelectric materials. J. Sound Vib. 330, 1111–1120 (2011)

    Article  Google Scholar 

  31. Yuan X.: The energy process of pyroelectric medium. J. Therm. Stresses 33, 413–426 (2010)

    Article  Google Scholar 

  32. Yuan X., Kuang Z.: The inhomogeneous waves in pyroelectrics. J. Therm. Stresses 33, 172–186 (2010)

    Article  Google Scholar 

  33. Yuan X., Zhu Z.H.: Reflection and refraction of plane waves at interface between two piezoelectric media. Acta. Mech. 223, 2509–2521 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Goldstein H., Poole C.P., Safko J.L.: Classical Mechanics. Addison-Wesley, San Francisco (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Li, L. Wave reflection and refraction in rotating and initially-stressed piezoelectric crystals. Acta Mech 226, 3243–3261 (2015). https://doi.org/10.1007/s00707-015-1377-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1377-4

Keywords

Navigation