Application and experimental validation of new computational models of friction forces and rolling resistance

Abstract

In the process of modelling of the Celtic stone rotating and rolling on a plane surface, different versions of simplified models of contact forces between two contacting bodies are used. The considered contact models take into account coupled dry friction force and torque, as well as rolling resistance. They were developed using Padé approximations, their modifications, and polynomial functions. Before the use of these models, some kinds of regularisations have been made, allowing to avoid singularities in the differential equations. The models were tested both numerically and experimentally, giving some practical guesses of the most essential elements of contact modelling in the Celtic stone numerical simulations. Since the tested contact models do not require the space discretisation, they can find application in relatively fast numerical simulations of rigid bodies with friction contacts.

References

  1. 1

    Awrejcewicz, J., Kudra, G.: Coupled model of dry friction and rolling resistance in the Celtic stone modelling. In: International Conference on Structural Engineering Dynamics (ICEDyn 2011), Tavira, Portugal (2011)

  2. 2

    Awrejcewicz J., Kudra G.: Celtic stone dynamics revisited using dry friction and rolling resistance. Shock Vib. 19, 1–9 (2012)

    Article  Google Scholar 

  3. 3

    Awrejcewicz J., Kudra G.: Mathematical modelling and simulation of the bifurcational wobblestone dynamics. Discontinuity Nonlinearity Complex. 3, 123–132 (2014). doi:10.5890/DNC.2014.06.002

    Article  Google Scholar 

  4. 4

    Bondi S.H.: The rigid body dynamics of unidirectional spin. Proc. R. Soc. Lond. A Math. 405, 265–279 (1986)

    MathSciNet  Article  Google Scholar 

  5. 5

    Borisov A.V., Kilin A.A., Mamaev I.S.: New effects in dynamics of rattlebacks. Dokl. Phys. 51, 272–275 (2006)

    Article  Google Scholar 

  6. 6

    Caughey T.K.: A mathematical model of the “Rattleback”. Int. J. Nonlinear Mech. 15, 293–302 (1980)

    MathSciNet  Article  Google Scholar 

  7. 7

    Contensou, P.: Couplage entre frottement de glissement et de pivotement dans la téorie de la toupe. Kreiselprobleme Gyrodynamics, In: IUTAM Symp, Calerina, pp. 201–216 (1962)

  8. 8

    Garcia A., Hubbard M.: Spin reversal of the rattleback: theory and experiment. P. R. Soc. Lond. A Math. 418, 165–197 (1988)

    MathSciNet  Article  Google Scholar 

  9. 9

    Goyal S., Ruina A., Papadopoulos J.: Planar sliding with dry friction. Part 1. Limit surface and moment function. Wear 143, 307–330 (1991)

    Article  Google Scholar 

  10. 10

    Gray A.: Modern Differential Geometry of Curves and Surfaces with Mathematica, pp. 457–480. CRC Press, Boca Raton (1997)

    Google Scholar 

  11. 11

    Howe R.D., Cutkosky M.R.: Practical force-motion models for sliding manipulation. Int. J. Robot. Res. 15, 557–572 (1996)

    Article  Google Scholar 

  12. 12

    Johnson K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  13. 13

    Kane T.R., Levinson D.A.: Realistic mathematical modeling of the rattleback. Int. J. Nonlinear Mech. 17, 175–186 (1982)

    Article  Google Scholar 

  14. 14

    Kireenkov A.A.: Combined model of sliding and rolling friction in dynamics of bodies on a rough plane. Mech. Solids 43, 412–425 (2008)

    Article  Google Scholar 

  15. 15

    Kosenko, I., Aleksandrov, E.: Implementation of the Contensou–Erisman model of friction in frame of the Hertz contact problem on Modelica. In: 7th Modelica Conference, Como, Italy, pp. 288–298 (2009)

  16. 16

    Kudra, G., Awrejcewicz, J.: Mathematical modelling and numerical simulations of the celtic stone. In: 10th Conference on Dynamical Systems-Theory and Applications, Lodz, Poland, pp. 919–928 (2009)

  17. 17

    Kudra, G., Awrejcewicz, J.: A wobblestone modelling with coupled model of sliding friction and rolling resistance. In: XXIV Symposium ”Vibrations in Physical Systems”, Poznan-Bedlewo, Poland, pp. 245–250 (2010)

  18. 18

    Kudra G., Awrejcewicz J.: Tangens hyperbolicus approximations of the spatial model of friction coupled with rolling resistance. Int. J. Bifurc. Chaos 21, 2905–2917 (2011)

    Article  Google Scholar 

  19. 19

    Kudra G., Awrejcewicz J.: Bifurcational dynamics of a two-dimensional stick-slip system. Differ. Equ. Dyn. Syst. 20, 301–322 (2012)

    MathSciNet  Article  Google Scholar 

  20. 20

    Kudra G., Awrejcewicz J.: Approximate modelling of resulting dry friction forces and rolling resistance for elliptic contact shape. Eur. J. Mech. A/Solids 42, 358–375 (2013)

    MathSciNet  Article  Google Scholar 

  21. 21

    Leine R.I., Glocker Ch.: A set-valued force law for spatial Coulomb–Contensou friction. Eur. J. Mech. A/Solid 22, 193–216 (2003)

    MathSciNet  Article  Google Scholar 

  22. 22

    Leine, R.I., Le Saux, C., Glocker, Ch.: Friction models for the rolling disk. In: 5th EUROMECH Nonlinear Dynamics Conference (ENOC 2005), Eindhoven, The Netherlands (2005)

  23. 23

    Lindberg J., Longman R.W.: On the dynamic behavior of the wobblestone. Acta Mech. 49, 81–94 (1983)

    MathSciNet  Article  Google Scholar 

  24. 24

    Magnus K.: Zur Theorie der keltischen Wackelsteine. Zeitschrift für angewandte Mathematik und Mechanik 5, 54–55 (1974)

    Article  Google Scholar 

  25. 25

    Markeev A.P.: On the dynamics of a solid on an absolutely rough plane. Regul. Chaotic Dyn. 7, 153–160 (2002)

    MathSciNet  Article  Google Scholar 

  26. 26

    Milne-Thompson, L.M.: Elliptic integrals. In: Abramowitz M., Stegun, I.A. (eds.) Hand-Book of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover Publications Inc., New York (1972)

  27. 27

    Möller, M., Leine, R.I., Glocker, Ch.: An efficient approximation of orthotropic set-valued laws of normal cone type. In: 7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal (2009)

  28. 28

    Walker G.T.: On a dynamical top. Q. J. Pure Appl. Math. 28, 175–184 (1896)

    Google Scholar 

  29. 29

    Wood S.N.: Minimising model fitting objectives that contain spurious local minima by bootstrap restarting. Biometrics 57, 240–244 (2001)

    MathSciNet  Article  Google Scholar 

  30. 30

    Zhuravlev V.P.: The model of dry friction in the problem of the rolling of rigid bodies. J. Appl. Math. Mech. 62, 705–710 (1998)

    MathSciNet  Article  Google Scholar 

  31. 31

    Zhuravlev V.P.: Friction laws in the case of combination of slip and spin. Mech. Solids. 38, 52–58 (2003)

    Google Scholar 

  32. 32

    Zhuravlev V.P., Klimov D.M.: Global motion of the celt. Mech. Solids 43, 320–327 (2008)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Kudra.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kudra, G., Awrejcewicz, J. Application and experimental validation of new computational models of friction forces and rolling resistance. Acta Mech 226, 2831–2848 (2015). https://doi.org/10.1007/s00707-015-1353-z

Download citation

Keywords

  • Friction Force
  • Friction Model
  • Contact Model
  • Rolling Resistance
  • Contact Pressure Distribution