Skip to main content
Log in

Mixed convection boundary-layer flow past a vertical flat plate with a convective boundary condition

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The mixed convection boundary-layer flow on a vertical surface with an applied convective boundary condition is considered. Specific forms for the outer flow and surface heat transfer parameter are taken to reduce the problem a similarity system, which is seen to involve three parameters: m, the exponent of the outer flow; λ, the mixed convection parameter and B, the Biot number, as well as the Prandtl number. \({m = \frac{1}{5}}\) is found to be a transitional case with different behaviour depending on whether \({m > \frac{1}{5}}\) or \({m < \frac{1}{5}}\). For \({m > \frac{1}{5}}\), there is a critical value λ c with solutions only for λ ≥ λ c, a range of values of λ where there are dual solutions and the upper solution branch continuing into aiding flow. For \({0 < m < \frac{1}{5}}\), there is a value of B where there is a change in behaviour from that seen for \({m > \frac{1}{5}}\) to solutions terminating at a finite value of λ > 0 and continuing to large values of |λ|. For m = 0 (uniform outer flow) only this latter behaviour is seen to arise. When m < 0, though still in the range when there is a solution to the Falkner–Skan, λ = 0, problem, the behaviour is similar to that seen for \({m > \frac{1}{5}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen T.S., Armaly B.F.: Mixed convection in external flow. In: Kakaç, S., Shah, R.K., Aung, W. (eds.) Handbook of Single-Phase Convective Heat Transfer, pp. 14.1–14.35. Wiley, New York (1987)

    Google Scholar 

  2. Gebhart B., Jaluria Y., Mahajan R.L., Sammakia B.: Buoyancy-Induced Flows and Transport. Hemisphere, New York (1988)

    MATH  Google Scholar 

  3. Schlichting H., Gersten K.: Boundary Layer Theory. Springer, New York (2000)

    Book  MATH  Google Scholar 

  4. Pop I., Ingham D.B.: Convective Heat Transfer: Mathematical and Computational Viscous Fluids and Porous Media. Pergamon, Oxford (2001)

    Google Scholar 

  5. Bejan A.: Convective Heat Transfer. 3rd edn. Wiley, New York (2013)

    Book  Google Scholar 

  6. Merkin J.H., Pop I.: Conjugate free convection on a vertical surface. Int. J. Heat Mass Transf. 39, 1527–1534 (1996)

    Article  MATH  Google Scholar 

  7. Merkin J.H.: Natural convection boundary-layer flow on a vertical surface with Newtonian heating. Int. J. Heat Fluid Flow 15, 392–398 (1994)

    Article  Google Scholar 

  8. Aziz A.: A similarity solution for laminar thermal boundary layer over flat plate with convective surface boundary condition. Commun. Nonlinear Sci. Numer. Simul. 14, 1064–1068 (2009)

    Article  MathSciNet  Google Scholar 

  9. Ishak A.: Similarity solutions for flow and heat transfer over permeable surface with convective boundary conditions. Appl. Math. Comput. 217, 837–842 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Magyari E.: Comment on “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition” by A. Aziz, Comm. Nonlinear Sci. Numer. Simul. 2009; 14: 1064-8. Commun. Nonlinear Sci. Numer. Simul. 16, 599–601 (2011)

    Article  MathSciNet  Google Scholar 

  11. Bataller R.C.: Similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinearly stretching surface. J. Mater. Process. Technol. 203, 176–183 (2008)

    Article  Google Scholar 

  12. Yao S., Fang T., Zhong Y.: Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 16, 752–760 (2011)

    Article  MATH  Google Scholar 

  13. Hansen A.G.: Similarity Analyses of Boundary Value Problems in Engineering. Prentice-Hall, New Jersey (1964)

    MATH  Google Scholar 

  14. Merkin J.H., Mahmood T.: Mixed convection boundary layer similarity solutions: prescribed wall heat flux. J. Appl. Math. Phys. (ZAMP) 20, 51–68 (1989)

    Article  MathSciNet  Google Scholar 

  15. Mahmood T., Merkin J.H.: Mixed convection on a vertical circular cylinder. J. Appl. Math. Phys. (ZAMP) 39, 186–203 (1988)

    Article  MATH  Google Scholar 

  16. Mahmood T., Merkin J.H.: Similarity solutions in axisymmetric mixed-convection boundary-layer flow. J. Eng. Math. 22, 73–92 (1988)

    Article  MATH  Google Scholar 

  17. Merkin J.H., Pop I.: Mixed convection along a vertical surface: similarity solutions for uniform flow. Fluid Dyn. Res. 30, 233–250 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rhida A.: Aiding flows non-unique similarity solutions of mixed-convection boundary-layer equations. J. Appl. Math. Phys. (ZAMP) 47, 341–352 (1996)

    Article  Google Scholar 

  19. Merkin J.H., Pop I.: The forced convection flow of a uniform stream over a flat surface with a convective surface boundary condition. Commun. Nonlinear Sci. Numer. Simul. 16, 3602–3609 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Makinde O.D., Olanrewaju P.O.: Buoyancy effects on thermal boundary layer over a vertical plate with a convective surface boundary condition. J. Fluids Eng. 132, 044502 (2010)

    Article  Google Scholar 

  21. Pantokratoras A.: Buoyancy effects on thermal boundary layer over a vertical plate with a convective surface boundary condition. New results. Int. J. Therm. Sci. 76, 221–224 (2014)

    Article  Google Scholar 

  22. White F.: Viscous Fluid Flow. 3rd edn. McGraw-Hill, New York (2006)

    Google Scholar 

  23. Roşca A.V., Pop I.: Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip. Int. J. Heat Mass Transf. 60, 355–364 (2013)

    Article  Google Scholar 

  24. Rahman M.M., Al-Lawatia M.A., Eltayeb I.A., Al-Salti N.: Hydromagnetic slip flow of water based nanofluids past a wedge with convective surface in the presence of heat generation (or) absorption. Int. J. Therm. Sci. 57, 172–182 (2012)

    Article  Google Scholar 

  25. Rahman M.M., Eltayeb I.A.: Radiative heat transfer in a hydromagnetic nanofluid past a nonlinear stretching surface with convective boundary condition. Meccanica 48, 601–615 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rahman, M.M., Roşca, A.V., Pop, I.: Boundary layer flow of a nanofluid past a permeable exponentially shrinking surface with convective boundary condition using Buongiorno’s model. Int. J. Numer. Methods Heat Fluid Flow (2014)

  27. Rahman, M.M., Roşca, A.V., Pop, I.: Boundary layer flow of a nanofluid past a permeable exponentially shrinking surface with second order slip using Buongiorno’s model. Int. J. Heat Mass Transf. (2014)

  28. Rahman, M.M., Grosan, T., Pop, I.: Oblique stagnation-point flow of a nanofluid past a shrinking sheet (under review) (2014b)

  29. Shampine, L.F., Reichelt, M.W., Kierzenka, J.: Solving boundary value problems for ordinary differential equations in Matlab with bvp4c. http://www.mathworks.com/bvp_tutorial (2010)

  30. Shampine L.F., Gladwell I., Thompson S.: Solving ODEs with MATLAB. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  31. Falkner V.M., Skan S.W.: Solutions of the boundary layer equations. Philos. Mag. 12, 132–135 (1931)

    Google Scholar 

  32. Stewartson K.: Further solutions of the Falkner-Skan equation. Proc. Camb. Philos. Soc. 50, 454–465 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rosenhead L.: Laminar Boundary Layers. Clarendon Press, Oxford (1963)

    MATH  Google Scholar 

  34. Merkin J.H., Mahmood T.: Mixed convection boundary layer similarity solutions: prescribed wall heat flux. J. Appl. Math. Phys. (ZAMP) 20, 51–68 (1989)

    Article  MathSciNet  Google Scholar 

  35. Merkin, J.H.: Mixed convection in a Falkner–Skan system (in preparation)

  36. Merkin J.H., Pop I.: Natural convection boundary-layer flow in a porous medium with temperature dependent boundary conditions. Transp. Porous Med. 85, 397–414 (2010)

    Article  MathSciNet  Google Scholar 

  37. Steinrück H.: About the physical relevance of similarity solutions of the boundary-layer flow equations describing mixed convection flow along a vertical plate. Fluid Dyn. Res. 32, 1–13 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Merkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Merkin, J.H. & Pop, I. Mixed convection boundary-layer flow past a vertical flat plate with a convective boundary condition. Acta Mech 226, 2441–2460 (2015). https://doi.org/10.1007/s00707-015-1334-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1334-2

Keywords

Navigation